
Hierarchical Label Inference Incorporating Attribute
Semantics in Attributed Networks

Junliang Li1,2, Yajun Yang1,2†, Qinghua Hu1, Xin Wang1 and Hong Gao3
1College of Intelligence and Computing, Tianjin University, Tianjin, China
2State Key Laboratory of Communication Content Cognition, Beijing, China

3College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, China
1{lijunliang, yjyang, huqinghua, wangx}@tju.edu.cn, 3honggao@zjnu.edu.cn

Abstract—Node attribute label inference is an important
problem in attributed networks. Most existing works assume that
node labels are at a single level, but in practice, the attribute labels
can always be organized in a hierarchical structure according to
their semantics. In this paper, we propose a novel hierarchical
label inference model for attributed networks. Specifically, we
propose a triple attention mechanism to extract fine-grained
label semantics from three levels: hierarchical, sibling and global.
Next, we propose the semantic fully-connected layer to explicitly
exploit label semantics for attribute inference. We also propose
semantic label propagation to enhance the interaction between the
label semantics and the attributed network, and this interaction
enables nodes in the attributed network to realise the proximity
assumption at the label semantic level. Finally, we combine the
semantic fully-connected layer with semantic label propagation for
top-down hierarchical attribute inference. Extensive experiments
demonstrate the superiority of our model.

Index Terms—attribute inference, hierarchical inference, label
semantics

I. INTRODUCTION

Inferring attributes of nodes in networks (e.g., social net-

works) is an important problem. Most existing work on attribute

inference always assumes that all labels are at one level, e.g.,

inferring the interests of users in social networks [1]–[3]. In

these works, there is no hierarchical relationship between

attributes, such as “military” and “classical music”, both of

which are at the same level. However, in some cases, attributes

can be organized in a hierarchy through their semantics. For

example, in an academic network, the research interest labels

of different users can be organized in a tree-like structure in

Fig. 1. Note that “CV” is subfield of “AI” and thus “AI” is

the parent of “CV” in this figure. From top to bottom, it is a

gradual refinement of the research fields and the lower-level

attribute labels are the fine-grained subfield of the upper-level

ones. Our task is to infer all attribute labels of a user from top

to bottom. We call this type of task hierarchical attribute label

inference or hierarchical multi-label classification (HMC).

Existing hierarchical attribute inference methods are mainly

classified into local and global methods. Local methods [4]–[6]

generate a classifier for each level separately. Local methods

ignore the semantic hierarchy of attributes, which can lead to

severe inconsistency in hierarchical inference tasks [7]. Also,

the local methods are computationally expensive when there are
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Fig. 1. An example of attribute semantic hierarchy graph.

many attribute levels. The objective of the global methods is to

develop a single global model for all attributes in the hierarchy.

Recent global methods have introduced various strategies to

exploit the structural information of top-down paths, such as

recursive regularization [8], reinforcement learning [9], and

meta-learning [10]. However, the above methods still exploit

hierarchical structures in a simple way, thus ignoring fine-

grained label relevance information.

Currently, only a small amount of work (e.g. [7] and

[11]) study hierarchical attribute inference in networks. An

attributed network is one where each node has attributes,

organized in an Attribute Semantic Hierarchy Graph (ASHG)

as depicted in Fig. 1. The MLI method in [7] infers hierarchical

attributes for unknown users by collecting nearby user attributes

through maximum entropy random walk, adjusting results using

ASHG structure. However, [7] only considers proximity in

the attributed network, excluding node features in attribute

inference, possibly affecting inference accuracy. Although [11]

takes node features as input and designs a correction mechanism

using ASHG, this correction mechanism still simply exploits

the explicit hierarchy of ASHG (parent-child) and does not

take into account deeper semantics (e.g., the importance of

labels to each other). Furthermore, both [7] and [11] separate

the attributed network from the ASHG and do not consider

enabling them to interact for more reasonable inference. Based

on the above analysis, we need to address the following new

requirements when designing hierarchical attribute inference

mechanisms for attributed networks: (Q1) How to mine the

finer-grained label semantics in ASHG? (Q2) How to use label

semantics for attribute inference? (Q3) How can the attributed

network be made to interact with ASHG?
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To address these three problems, we propose a Hierarchical

Label Inference (HLI) model for attributed networks. Firstly,

to address Q1, we propose a triple attention mechanism to

mine fine-grained semantics in ASHG. We end up with label

embeddings that contain rich semantics. Secondly, to address

Q2, we propose semantic fully-connected layer (SFC), which

performs attribute inference for each level by using attributed

network node embeddings and label semantics as input and

classification weights, respectively. Thirdly, to address Q3, we

propose semantic label propagation (SLP), which is an approach

that combines label semantics and attributed network structure

for attribute inference. Finally, we combine SFC and SLP and

propose a novel top-down hierarchical inference mechanism.

The main contributions of our work can be summarized as

follows:

• We propose a triple attention mechanism to extract the

richer semantic information between labels. Compared to

previous work that uses only structural information, our

model can extract different types of importance between

labels.

• We propose two approaches for attribute inference, se-

mantic fully-connected layer (SFC) and semantic label

propagation (SLP). SFC directly uses label semantics for

attribute inference, while SLP combines label semantics

and attributed network structure to satisfy the proxim-

ity assumption in attributed network. We also propose

a top-down hierarchical attribute inference mechanism

combining SFC and SLP, such that lower-level inference

can benefit from the results of higher-level inference.

• We conduct extensive experiments to validate the effec-

tiveness of our proposed model on real datasets.

II. PROBLEM STATEMENT

An attributed network, denoted as G = (V,E,X,Σ), is

modeled as a directed graph, where V and E are the set of the

nodes and edges in G respectively. X ∈ R
n×f represents the

node feature matrix, where n is the number of nodes in G, and

every node has f features. Σ is a set of attribute labels and

l is a function mapping from Vs to Σ, where Vs is a subset

of V , called “attribute-known” node set, in which every node

vi ∈ Vs has a set of attribute labels l(vi) = {l1, · · · , lk}, where

li is a parent of li+1 in semantic for every 1 ≤ i ≤ k − 1. It

means that the attribute information about each node vi ∈ Vs

is known, while the attribute information about each node

vj /∈ Vs is unknown.

Definition 1 (Attribute Semantic Hierarchy Graph, ASHG). An
Attribute Semantic Hierarchy Graph H = (Σ, T ) is a directed
graph, where the label set Σ and T are the node set and
edge set respectively. All the nodes in Σ are distinct attribute
labels and are organized in a tree-like structure with k different
levels. Σi is the set of the labels at the i-th level and thus
Σ =

⋃
1≤i≤k Σi. Attribute labels in Σi+1 are the refinement of

the corresponding parent nodes in Σi. Every edge (li, lj) ∈ T
means li is a parent of lj in semantic or li and lj has the
same semantical parent. �

Fig. 1 illustrates the attribute semantic hierarchy graph of

an academic network. For a researcher vi whose interest is

“Sequence Tagging”, the research interest label set of vi is

l(vi) = {“CS”, “AI”, “NLP”, “Sequence Tagging”}.

Definition 2 (Hierarchical Attribute Label Inference). Given
a network G with an attribute-known node set Vs, and an
attribute semantic hierarchy graph H , the problem of hierar-
chical attribute label inference is to determine the attribute
label set l(vi) = {l1, · · · , lk} for every node vi ∈ V \ Vs,
where li ∈ Σi is an attribute label at i-th level of H and li is
the parent of li+1 in semantic. �

III. PROPOSED MODEL

As shown in Fig. 2, HLI is divided into three phases:

representation learning, attribute inference and objective opti-

mization. Representation learning is used to extract attributed

network node embeddings and label embeddings containing rich

semantic information. Attribute inference consists of semantic

fully-connected layer (SFC) and semantic label propagation

(SLP), and aims to use label semantics for attribute inference.

Finally, we perform model optimisation using cross-entropy

loss.

A. Representation Learning

1) ASHG Representation Learning: We designed a triple

attention mechanism to extract the rich label semantics in

ASHG. Hierarchical and sibling-level attention is used to extract

two different label semantics, and global-level attention is used

to combine the two semantics.

Hierarchical-level Attention. The design of hierarchical-

level attention is inspired by varying importance of parent

and child nodes for a label. For example, in learning the

embedding of the “NLP” node in Fig. 1, “AI” and “Sequence

Tagging” are the coarser and finer-grained semantics of “NLP”,

respectively. If our task is to infer the specific research direction

of NLP researchers, then perhaps “Sequence Tagging” is more

important for “NLP” node.

Assuming that the feature of node hi in ASHG H = (Σ, T )
is fi ∈ R

b, we first convert the feature vector of node hi

as follows to obtain a more potent expression: f
′
i = Wfi,

where W ∈ R
d×b is the learnable weight and f

′
i ∈ R

d is the

transformed feature of node hi. Next, the weight between node

hi and its hierarchical neighbor hj are defined as:

ai,j = νΦ · cos(f ′
i ,f

′
j), hj ∈ NΦ

i ∪ {hi} (1)

αij = softmax(ai,j) =
exp(ai,j)∑

hk∈NΦ
i ∪{hi} exp(ai,k)

(2)

where νΦ ∈ R
3 is the trainable parameter and cos(f

′
i ,f

′
j) =

f
′�
i f

′
j/‖f

′
i‖‖f

′
j‖ with the L2 norm ‖f ′

i‖. Where NΦ
i denotes

the hierarchical neighbor nodes of node hi. ai,j ∈ R denotes

the importance of node hi’s hierarchical neighbor hj to node hi.

It is worth noting that the cos(·, ·) function is symmetric, i.e.,

cos(f
′
i ,f

′
j) = cos(f

′
j ,f

′
i ). However, this symmetry does not

make sense in the real world. For example, in social networks,

nodes with low influence are easily influenced by nodes with
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Fig. 2. Framework of HLI. Firstly, HLI learns node embeddings from ASHG and attributed network utilizing the triple attention mechanism and GraphSage
respectively. Then, based on the attribution network node embeddings and label embeddings, HLI performs attribute inference using SLP and SFC. Finaly, we
utilize multi-label loss to optimize our model.

high influence, and vice versa. So we use νΦ to realize this

asymmetry. After obtaining the importance of all hierarchical

neighbor nodes of node hi, we normalize them using the

softmax function to obtain the hierarchical-level attention score

αij . Then we can obtain the aggregated features of node hi’s

hierarchical neighbors:

zΦ
i = σ(

∑
hj∈NΦ

i ∪{hi}
αi,j · f ′

j) (3)

where σ denotes the activation function and zΦ
i ∈ R

d denotes

the embedding learned from node hi’s hierarchical neighbors.

Sibling-level Attention. It is necessary to distinguish the

differences between sibling labels under the same parent node.

For example, “CV”, “NLP” and “Time Series Analysis” are

all subfields of “AI”, and “CV” should be considered more

in relation to NLP if the majority of authors in the academic

network study the field of “Visual Question Answering”. In

this paper, we introduce sibling-level attention to learn the

differences between sibling nodes.

The weights between node hi and its sibling neighbor node

hj are defined as:

bi,j = νΨ · cos(f ′
i ,f

′
j), hj ∈ NΨ

i ∪ {hi} (4)

βi,j =
exp(bi,j)∑

hk∈NΨ
i ∪{hi} exp(bi,k)

(5)

where νΨ ∈ R
3 is a trainable parameter and NΨ

i denotes

the sibling neighbor nodes of node hi. bi,j ∈ R denotes the

importance of node hi’s sibling neighbor hj to node hi. After

obtaining the importance of all the sibling neighbor nodes of

node hi, we use the softmax function to normalize all weights

in order to obtain the sibling-level attention score βi,j . Then

concat add
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Fig. 3. Feature aggregation process with attention mechanism. Hierarchical-
level and sibling-level attention are applied to node hi’s hierarchical neighbors
NΦ

i and sibling neighbors NΨ
i to obtain zΦ

i and zΨ
i , respectively. zΦ

i and

zΨ
i are finally aggregated by global-level attention to obtain node hi’s updated

feature z
′
i .

we can obtain the aggregated features of node hi’s sibling

neighbors:

zΨ
i = σ(

∑
hj∈NΨ

i ∪{hi}
βi,j · f ′

j) (6)

where zΨ
i ∈ R

d denotes the embedding learned from node hi’s

sibling neighbors.

Global-level Attention. To obtain the final embedding

of node hi, we need to combine the embedding learned

from its hierarchical neighbors with the embedding learned

from its sibling neighbors. To retain more information, we

directly concatenate the two embeddings to obtain the final

representation:

zi = Wg · (zΦ
i ||zΨ

i ) (7)

where Wg ∈ R
d×2d. To stabilize the learning process for the

three attention mechanisms, we used multi-head mechanism.
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Specifically, we repeated the above process K times and then

averaged the K results to obtain the final results:

zi =
K∑
t=1

(Wg · (zΦ
i ||zΨ

i )) (8)

Finally, considering the importance of the feature of the node

itself, the feature of node hi are updated as follows:

z
′
i = σ(M [zi||f ′

i ] +Θfi) (9)

where z
′
i ∈ R

d denotes the final embedding of node hi. M ∈
R

d×2d and Θ ∈ R
d×b are learnable weights. The reason to

consider adding Θfi is because it ensures that the output of

each node is different to alleviate over-smoothing. To better

understand the execution process of attention, we have made a

brief illustration in Fig. 3.

2) Attributed Network Representation Learning: Attributed

networks are usually large in size. GraphSAGE [12] solves

the problem of GCN [13] memory explosion by neighbor

sampling and is suitable for large-scale networks. Therefore,

GraphSAGE is used in this paper for representation learning

of attributed networks. Let the initial feature of node vi in

G = (V,E,X,Σ) is xi. After multiple layers of message

passing and aggregation, the features X ∈ R
n×f of all nodes

in G are updated to X ∈ R
n×d.

B. Attribute Inference

In this section, we introduce the mechanisms used for

attribute inference. Let ASHG H output be Z ∈ R
|Σ|×d

and attributed network G output be X ∈ R
n×d after the

node features of H and G have been updated, where d is the

embedding dimension. We hypothesize that attribute inference

consists of two components: semantic fully-connected layer
inference (SFC) and semantic label propagation (SLP),
where the latter complements the former and provides a priori

knowledge to the former.

Semantic Fully-Connected Layer Inference. Z ∈ R
|Σ|×d

is the embedding matrix of all attribute labels in ASHG, which

contains rich label semantic information. Thus, similar to the

fully-connected layer classifier y = wx+ b, in this paper we

use the attribute labels embedding Z as weights for attribute

inference. Specifically, we treat the label embedding ZΣi ∈
R

|Σi|×d of level i in ASHG as a classifier and multiply it with

X ∈ R
n×d to obtain the prediction scores Osfc

i ∈ R
n×|Σi| for

level i of all nodes in G:

Osfc
i = XZ�

Σi
, 1 ≤ i ≤ k (10)

where |Σi| denotes the number of labels in level i of ASHG.

Semantic Label Propagation. Although the attribute label

embedding Z ∈ R
|Σ|×d contains rich label semantic infor-

mation, this semantic information is only extracted based on

ASHG and does not consider the interactions between entities

in the attributed network G. SFC simply multiplies the two

embeddings and does not consider the naive assumption that

the labels of adjacent entities in G should be more similar.

Label propagation (LP) [14] is a classical semi-supervised

learning model based on graph structure, which is based on a

simple assumption that two nodes on the same edge tend to

have similar labels. We assume that the initialized label matrix

of all nodes in G at level i is Y
(0)
i . Formally, the t + 1-th

iteration of label propagation is defined as follows:

Y
(t+1)
i = λ ·D− 1

2AD− 1
2Y

(t)
i + (1− λ)Y

(t)
i (11)

where A and D denote the adjacency matrix and the diagonal

degree matrix of G, respectively. λ is a hyper-parameter con-

trolling the smoothness of node updates. Let Y
(t)
i (vj) ∈ R

|Σi|

denote the predicted score of node vj ∈ V in Y
(t)
i . In this paper,

we use label semantic embeddings Z instead of traditional

one-hot encoding [15] to initialize the label matrix, and then

use MLP to obtain the prediction scores when the propagation

is finished. This way can effectively utilize meaningful label

semantic information, and the model is trainable, so it can

effectively alleviate the disadvantages of iterative instability

and low accuracy. Specifically, the label matrix of level i of

all nodes in G is initialized as Ỹ
(0)
i :

Ỹ
(0)
i (vj) =

{
ZΣi

(vj) ∈ R
d, ∀vj ∈ Vs.

(0, ...0, ...0) ∈ R
d, ∀vj ∈ V \ Vs

(12)

where ZΣi
(vj) denotes the embedding of the label of the i-th

level of node vj ∈ Vs. After Kp iterations, we use a MLP to

obtain the prediction scores of all nodes as follows:

Oslp
i = softmax(MLP(Ỹ

(Kp)
i )), 1 ≤ i ≤ k (13)

where Oslp
i ∈ R

n×|Σi| denotes the prediction scores of the

i-th level of all nodes in G.

Combination and Chain Residual Inference. Now we

will combine SFC and SLP for full hierarchical attribute label

inference. Since the inference results of the upper level can

provide guidance to the lower level inference process, we

follow top-down hierarchical inference. Specifically, the final

prediction scores O1 ∈ R
n×|Σ1| for the first level of all nodes

in G are obtained by weighted summation of the above two

components:

O1 = (1− α)Osfc
1 + αOslp

1 (14)

where α is the hyperparameter that controls the proportion of

semantic label propagation. Next, the prediction score Oi ∈
R

n×|Σi| of the i-th (1 < i ≤ k) level is defined as follows:

Oi = (1− α)(Õsfc
i ) + αOslp

i , Õsfc
i = X̃ iZ

�
Σi

(15)

Unlike X in the calculation of Osfc
1 = XZ�

Σ1
, the inference

results of level i− 1 are incorporated in X̃ i. Specifically, the

expression of X̃ i is as follows:

X̃ i = (1− αi − β)X + αiWiỸ
(Kp)
i−1 + βW0X (16)

where αi and β are two hyperparameters. The three components

of X̃ i are as follows: 1) (1−αi −β)X . 2) αiWiỸ
(Kp)
i−1 . This

component represents the result of the semantic propagation

from the upper level, which is used to guide the inference in
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TABLE I
STATISTICS OF DATASETS

Dataset Graph Nodes Edges Levels Labels

IS
Attri. Net. 17225 180378

4 1+10+29+82
ASHG 122 642

ACS
Attri. Net. 33332 451150

4 1+8+41+213
ASHG 263 2390

this level. The larger αi means that the inference process of the

lower level is more affected by the upper level. 3) βW0X . X
represents the initial features of all nodes in attributed network,

and this component will be added to X̃ i as the initial residual

to prevent over-smoothing. In our experiments, we let α = 0.3,

αi = 0.1 and β = 0.2.

C. Objective

Considering label inference as essentially a classification

task, we consider minimizing the cross-entropy loss function:

Ls =
k∑

i=1

CrossEntropyLoss(Oi,yi) (17)

where yi represents the ground truth of the i-th level of labeled

nodes in attributed network. Eventually, we define the total

loss by linearly combining these two component losses: L ←
Ls + γLreg, where γLreg denotes the regularization term to

alleviate overfitting. We optimize using the Adam optimizer to

update all the parameters mentioned earlier.

IV. EXPERIMENTS

A. Experimental Setup

1) Dataset: The dataset used in this article is an updated

version of the public Amazon reviews dataset1 released in 2014.

In this study, we create attributed network and ASHG using

product metadata. Our task is to infer the multi-level attribute

labels of the product nodes in the attributed network.

Nodes in the attribute network denote products, and links

denote two products being purchased together. Nodes in ASHG

denote the category labels of the products. We use the Hashing

Vectorizer algorithm to extract the feature vectors from the

product descriptions. We utilize node2vec [16] to obtain the

initial feature vectors for every node in ASHG. The statistical

information is shown in Table I. The abbreviations “IS” and

“ACS” stand for “Industrial and Scientific” and “Arts Crafts

and Sewing” respectively, representing two different broad

categories. In Table I, “1+10+29+82” indicates that the number

of labels in each level of the ASHG is 1, 10, 29 and 82,

respectively.

2) Evaluation Metrics: Let Vu = V \ Vs denotes the set of

nodes with unknown attribute labels in the attributed network.

We used Accuracy (Acc), H-Precision (HP), H-Recall (HR),

H-F1 (HF1), Jaccard Distance (JD) and Hamming Loss (HL)

to evaluate the performance of all models.

1https://nijianmo.github.io/amazon/index.html

Acc =
1

|Vu|
|{vi|vi ∈ Vu ∧ Pvi

= Tvi
}| (18)

HP =
1

|Vu|
∑

vj∈Vu

1

k

k∑

i=1

|Pvj
i ∩ Y

vj
i |

|Pvj
i |

(19)

HR =
1

|Vu|
∑

vj∈Vu

1

k

k∑

i=1

|Pvj
i ∩ Y

vj
i |

|Y vj
i |

(20)

HF1 =
2 × HP × HR

HP + HR
, JD =

1

|Vu|
∑

vi∈Vu

|Pvi
∩ Yvi

|
|Pvi

∪ Yvi
| (21)

HL =
1

|Vu|
∑

vi∈Vu

|XOR(Pvi
, Yvi

)|
k

(22)

where Pvi and Tvi (|Pvi | = |Tvi | = k) are the set of predicted

result and ground-truth attribute labels of vi ∈ Vu separately.

P
vj

i is the set consisting of the attributes predicted for vj in

level i and all their ancestor attributes, similarly Y
vj
i is the set of

ground-truth attributes in level i and all their ancestor attributes.

Notably, |Y vj
i | = |P vj

i |, i.e., HP=HR=HF1. Therefore, in the

following experiments, we only show the calculation results

of HF1. For all metrics except Hamming Loss, a larger value

means better performance.
3) Comparative models and Parameter Settings: It is worth

noting that the number of first level labels is 1 for both datasets,

so we only need to predict the last three labels for each node

in the attributed network. We compare our model HLI with

5 methods including the traditional machine learning model

Decision Tree (Dec), 2 classical GNN models (GCN [13]

and GAT [17]) and 2 HMC methods (HMC-LMLP [4] and

MLI [7]). For GCN and GAT, after using GNN to obtain the

embeddings of the nodes in attributed network, we input them

into three MLPs to obtain three labels for each node. More

detailed parameter settings can be found in github2.

B. Full-supervised Attribute Label Inference

We first evaluate the performance of HLI in the task of

full-supervised hierarchical attribute label inference. For each

dataset, we randomly split the nodes into 60%, 20%, and 20%

for training, validation and testing.

Table II reports the experimental results on the 2 datasets. We

observe that HLI achieves the best performance on all metrics

for both datasets. Dec and HMC-LMLP are all less effective

as they can only utilize the node features and cannot extract

structural information. Due to its ability to efficiently extract

both structural and feature information simultaneously, the

GNN-based method performs better overall. HLI extracts fine-

grained semantics using attention mechanisms, while enhancing

the interaction between the label and attributed networks,

and therefore performs best. Notably, MLI exploits both the

attributed network structure and the coarse-grained semantics

of the labels and performs second only to HLI, indicating the

importance of exploiting the semantics of the labels.

C. Semi-supervised Attribute Label Inference

In real life, only a small fraction of the nodes in the

attributed network may have labels due to data privacy and other

2https://github.com/ki-ljl/HLI
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TABLE II
FULL-SUPERVISED HIERARCHICAL ATTRIBUTE LABEL INFERENCE

RESULTS (%)

Dataset Metric Dec GCN GAT HMC-LMLP MLI HLI

IS

Acc 58.43 77.76 76.80 63.11 79.18 82.32
HF1 83.27 94.41 94.12 87.12 95.14 95.72
JD 67.72 84.79 84.14 72.24 86.47 88.36
HL 56.93 24.71 25.83 48.57 21.50 18.61

ACS

Acc 62.01 69.30 71.28 61.73 75.67 77.48
HF1 85.65 91.92 92.17 88.33 93.37 94.02
JD 71.26 79.24 80.25 72.60 83.49 84.62
HL 49.73 33.95 32.56 46.38 27.01 25.26

TABLE III
SEMI-SUPERVISED HIERARCHICAL ATTRIBUTE LABEL INFERENCE

RESULTS (%)

Dataset Metric Dec GCN GAT HMC-LMLP MLI HLI

IS

Acc 43.10 70.25 66.18 50.75 73.95 79.35
HF1 77.24 92.59 91.91 84.93 93.58 94.58
JD 55.89 80.11 77.53 64.80 82.91 86.04
HL 77.07 32.35 36.08 59.25 27.27 22.62

ACS

Acc 35.03 64.85 64.25 30.75 65.83 67.15
HF1 76.31 90.88 89.64 82.70 90.73 91.26
JD 51.59 76.16 74.81 53.85 77.17 78.25
HL 83.13 39.08 42.38 44.98 37.08 35.03

reasons. To explore the performance of HLI in this scenario, we

conduct semi-supervised experiments. Specifically, we performe

a standard fixed train/validation/test split on the two datasets,

with 100 nodes per class (fourth level of labels) for training,

2,000 nodes for validation and 4,000 nodes for testing.

Table III reports the experimental results on the 2 datasets.

As can be seen, in the semi-supervised scenario, HLI still

performs the best among all metrics in both datasets. Although

fewer labels are available for model training, HLI can still

use ASHG (SFC and SLP) to indirectly leverage more label

information, so HLI can still achieve a solid performance.

D. Ablation Experiment

To demonstrate the effectiveness of the components in HLI,

we created the following 4 variants: (1) HLIh: which does

not include hierarchical-level attention. (2) HLIs: which does

not include sibling-level attention. (3) HLIsfc: which does

not use SFC and only performs hierarchical attribute inference

based on SLP. (4) HLIslp: which does not use SLP and only

performs hierarchical attribute inference based on SFC.

Fig. 4 reports the results of the ablation experiments. We can

observe that HLI outperforms the 4 variants mentioned above,

which indicates that all four modules of HLI can individually

improve the model performance.

IS ACS
0.72

0.74

0.76

0.78

0.80

0.82

A
C

C

HLIh
HLIs

HLIsfc
HLIslp

HLI

Fig. 4. Ablation study in full-supervised scenario.

V. CONCLUSION

In this paper, we propose a novel hierarchical attribute

inference model for attributed networks. We propose to use

a triple attention mechanism to mine more fine-grained label

semantics than previous work that only exploits structural

information between labels. We propose both SFC and SLP

approaches to hierarchical attribute inference and combine them

to perform top-down hierarchical attribute inference. Extensive

experiments demonstrate the effectiveness of our model.

ACKNOWLEDGEMENT

This work was supported by the State Key Laboratory of

Communication Content Cognition Funded Project No. A32003,

National Natural Science Foundation of China No. U22A2025

and No. 61972275.

REFERENCES

[1] F. Zarrinkalam, M. Kahani, and E. Bagheri, “Mining user interests over
active topics on social networks,” Information Processing & Management,
vol. 54, no. 2, pp. 339–357, 2018.

[2] C. Budak, A. Kannan, R. Agrawal, and J. Pedersen, “Inferring user
interests from microblogs,” AAAI ICWSM, 2014.

[3] J. Xu and T.-C. Lu, “Inferring user interests on tumblr,” in Social Com-
puting, Behavioral-Cultural Modeling, and Prediction: 8th International
Conference, SBP 2015, Washington, DC, USA, March 31-April 3, 2015.
Proceedings 8, pp. 458–463, Springer, 2015.

[4] R. Cerri, R. C. Barros, and A. C. de Carvalho, “Hierarchical multi-label
classification for protein function prediction: A local approach based on
neural networks,” in 2011 11th International Conference on Intelligent
Systems Design and Applications, pp. 337–343, IEEE, 2011.

[5] F. K. Nakano, R. Cerri, and C. Vens, “Active learning for hierarchical
multi-label classification,” Data Mining and Knowledge Discovery,
vol. 34, pp. 1496–1530, 2020.

[6] Y. Yan and S.-J. Huang, “Cost-effective active learning for hierarchical
multi-label classification.,” in IJCAI, pp. 2962–2968, 2018.

[7] H. Zhang, Y. Yang, X. Wang, H. Gao, and Q. Hu, “Mli: A multi-
level inference mechanism for user attributes in social networks,” ACM
Transactions on Information Systems (TOIS), 2022.

[8] S. Gopal and Y. Yang, “Recursive regularization for large-scale classifica-
tion with hierarchical and graphical dependencies,” in Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 257–265, 2013.

[9] Y. Mao, J. Tian, J. Han, and X. Ren, “Hierarchical text classification with
reinforced label assignment,” arXiv preprint arXiv:1908.10419, 2019.

[10] J. Wu, W. Xiong, and W. Y. Wang, “Learning to learn and predict: A
meta-learning approach for multi-label classification,” arXiv preprint
arXiv:1909.04176, 2019.

[11] M. Romero, J. Finke, and C. Rocha, “A top-down supervised learning
approach to hierarchical multi-label classification in networks,” Applied
Network Science, vol. 7, no. 1, pp. 1–17, 2022.

[12] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” Advances in neural information processing systems,
vol. 30, 2017.

[13] M. Welling and T. N. Kipf, “Semi-supervised classification with graph
convolutional networks,” in J. International Conference on Learning
Representations (ICLR 2017), 2016.

[14] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data
with label propagation,” 2002.

[15] C. Yang, J. Liu, and C. Shi, “Extract the knowledge of graph neural net-
works and go beyond it: An effective knowledge distillation framework,”
in Proceedings of the web conference 2021, pp. 1227–1237, 2021.

[16] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 855–864,
2016.

[17] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” stat, vol. 1050, p. 20, 2017.

1096

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 29,2025 at 16:59:59 UTC from IEEE Xplore.  Restrictions apply. 


