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Abstract. The relationship strength between individuals in the net-
work is an essential task in network analysis. However, existing mea-
sures of relationship strength are mostly artificially predefined, which
can only reflect the relationship strength from a single perspective. To
compensate for this, we propose a novel GNN-based model for Min-
ing Relationship Strength Changes between Nodes in dynamic networks,
named MRSCN, which learns the reasonable relationship strength from
networks. To verify the effectiveness of our measure on the relationship
strength change, we further propose a novel e-drastic group model. We
develop two group mining algorithms. We conduct extensive experiments
on real-life dynamic networks to evaluate our models. The results demon-
strate the effectiveness of the proposed MRSCN model and the drastic
group mining method.

Keywords: Relationship strength change - Drastic group - Dynamic
networks

1 Introduction

In the real world, the relationships between various entities are constantly chang-
ing and can be described by dynamic networks, such as social networks. The
graph sequence has been introduced to model the dynamic network. At each
time point, the graph snapshot is taken to capture the status of the network.
For example, in a mobile communication network, the calls between participants
each day are modeled and captured as a graph snapshot.

Investigating relationship strength among individuals in the network is essen-
tial in network analysis. In social networks, the relationship strength indicates
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the possibility that two people become friends even though they may not know
each other at the current time. However, the relationship strength also changes
over time. Then it is crucial to study the relationship strength change for
dynamic network analysis. Based on the relationship strength change, various
drastically changing groups can be mined for human beings to track the sig-
nificant or abnormal changes in networks. For example, in financial trade net-
works, gang frauds always occur much more frequently than individual frauds.
Money laundering syndicates often evade regulation by making small but multi-
ple transactions, resulting in frequent changes in relationship strength between
individuals. Mining groups with relationship strengths changing frequently help
regulators detect potential risks in time. Due to the importance of the relation-
ship strength between entities, it is necessary to find a reasonable measure of
relationship strength.

Several works [1,4] proposed various metrics to measure the relationship
strength between nodes, such as connectivity and common neighbors. How-
ever, all these artificially predefined measurements can only reflect relation-
ship strength from a single perspective. For the example in Fig. 1, relationship
strengths between nodes of the same color change significantly when different
metrics are used. It is necessary to design a reasonable relationship strength
model to study the relationship strength change for dynamic networks.

O, ' ()
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Fig. 1. An illustrative example of existing relationship strength measurements.

In this paper, we propose a novel GNN-based model for Mining Relationship
Strength Changes between Nodes in dynamic networks, named MRSCN, which
adaptively learns the relationship strength between nodes from networks. Then
we further propose the concept of cumulative relational strength change. We also
define a drastic group model and investigate the e-drastic group mining problem
to verify the usefulness of our measure on relationship strength change. Finally,
we conduct extensive experiments to validate the effectiveness of our method.

2 Related Work

In this section, we review related studies on dynamic network analysis, graph
embedding, and relationship strength.

As a hot area for researchers in recent years, researchers analyzed dynamic
networks from different aspects. Yang et al. [18] developed an algorithm to cap-
ture frequently changing components in dynamic networks. Qin et al. [15] pro-
posed a model to mine periodic cliques in dynamic networks. Jia et al. [10]
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proposed a method to measure the community consistency. Li et al. [14] devel-
oped a new algorithm to find stable communities based on the density-based
graph clustering framework. To the best of our knowledge, previous studies have
paid little attention to the relationship strength change in dynamic networks.

Graph embedding is used to map nodes to low-dimensional vectors based on
network topology. Existing work focuses on preserving structural and attribute
information in the embedding, such as DeepWalk [13], Node2Vec [8], DANE [7]
and so on. Graph Neural Networks (GNNs) [16], which use a deep learning frame-
work on graph data, have attracted lots of attention. GNNs have been widely
used in graph-based problems, such as GCN [12], GAT [17] and GraphSage [9].

Existing research on relationship strength can be divided into two main cat-
egories: the first one is based on the network topology to calculate relationship
strength, such as common neighbors [14] and connectivity [4]; the second one
is a combination of user interactions and user profiles. Guo et al. [11] obtained
the fused similarity matrix from different views of user interactions and user
profiles. However, there are shortcomings such as artificially predefined or con-
sidering structural information from one aspect.

3 Preliminaries

We represent the dynamic network consisting of a sequence of undirected graphs
as g = (Gl,G27~ - ~,G||g“)7 where Gy = (V4, E}) is a graph snapshot at time ¢ with
a set of vertices V; and a set of edges F;, and ||G|| is the number of G; in G.
N (u) denotes the neighbors of node u. Given nodes u and v, we denote d(u,v)
as the distance between u and v, namely the shortest number of hops from u
to v. The i-hop neighbors of node u, denoted as N;(u), contain all the nodes
whose distance to u are i, i.e., N;(u) = {v € V|d(u, v) = i}. The i-hop reachable
neighbors of node u, denoted as N<;(u), contain all the nodes whose distance to
u is no more than 4 (i > 1). Clearly, N<;(u) = U_, Nj(u).

Relationship strength has no uniform definition and refers to the closeness
between individuals. To address the problem of existing predefined models cap-
turing a single relationship, we learn the relationship strength adaptively based
on GNN. The relationship strength between u and v in G; is denoted as rs;(u, v).
Furthermore, the relationship strength change between u and v from Gy to G441
is defined as §;(u,v) = |rsip1(u, v) — rsg(u,v)|. Our aim is to learn the reason-
able relationship strength measurement and propose the drastic group model to
verify the effectiveness of the relationship strength measurement.

4 Mining Relationship Strength Changes Between Nodes

In this section, we introduce our novel MRSCN model in dynamic networks. The
overview architecture of MRSCN is shown in Fig.2. The key idea behind our
model is to use the GNN model to mine the relationship strength by compre-
hensively considering global and local information.
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4.1 Global Structure Information Capture

In this section, we use random walk and pointwise mutual information to encode
the global structure information.

TdN MWN.~%
ty - EEEEE - -
.- (L]
e
Y
& T R— N
T
t \)~ = EEEEE = g HEEN
o O |y HEECE
=
-
o T R—
tr _)Q' = AREEN = %" /
L] (]
- .
Time Input Graph 0%l GNN Relationship 1, /e Group

Information Strength Matrix

Fig. 2. The overview of the proposed MRSCN.

Calculating Node Co-occurrence Matrix C. We use matrix C to represent
the co-occurrence frequencies between nodes. We use the random walk algorithm
here. For each vertex v; in the graph, we first select it as the starting vertex,
which is also the current vertex. We define the current state as s(¢) = v;. Then
we randomly select the next vertex v; from the neighbors of v;. The transition
probability of jumping from the current node v; to v; is calculated as:

p(s(t+1) =vsls(t) = v;) = Ai,j/ZAi,j, (1)

where A is the adjacency matrix. Now, we mark this newly selected vertex v;
as the current vertex and repeat such a vertex sampling process. The algorithm
terminates when the length of the vertex sequence reaches a pre-set number
called walk length 1. We repeat the above procedure ~y times for each node and
record the starting node v; and node v; in the sequence for each walk. For each
pair (v;,v;), We add one to the values of C; ; and C;; respectively, and finally
obtain the node co-occurrence matrix C.

Calculating PPMI Matrix M. Pointwise mutual information [5] is often used
to measure the correlation of variables. In this paper, we use it to measure the
global relationship between nodes. Based on C, we calculate the PPMI matrix
M € R™ ™ as:

Pi,j
mij = max{log(m),o}. (2)
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Algorithm 1. GraphSage Embedding Generation Algorithm

Input: Graph G(V,€); input features {f,,Vv € V}; depth K; weight matrices W*;
aggregator functions AGGREGATEy; neighborhood function N : v — 2V

Output: Vector representations z, for all v € V
ch? —f,, Yoey
:fork=1,...,K do

for Vv € V do

hf «— o(WHF . MEAN({h* 7'} U{h5™! Vu € N(v)}))

end for

h* — h¥/|h%|2, Vo € V
end for
zy, — hE¥ wo ey

SN I R

The global structure information is encoded by applying Eq. (2). p; ; is the
estimated probability that nodes v; and v; occur during the random walk at
the same time, i.e., p; ; = 207] Di,« and p, ; are the estimated probability

J

—C;
i G,
that nodes v; and v; occur during the walk respectively, i.e., p; « = %33701 and
ig Y

Pij = % m;,; is the measure of the global correlation of nodes v; and

v;. As we are focusing on the semantic relation, our method uses a nonnegative
pmi. It is worth noting that matrix C and matrix M need to be recomputed for
different graph snapshots.

4.2 Graph Neural Network Model

To jointly consider the global and local structure information, we integrate global
information into the GNN model. GraphSage is used to generate embeddings by
aggregating global features from the node’s local neighborhood [9].

For each node, the algorithm iteratively aggregates global information from
the node’s neighbors. The process of aggregating information from neighbors
is capturing local information. Algorithm 1 describes the embedding generation
process. We use the row vector M, . in M as the node feature f,, and the inductive
variant of the GCN approach as the aggregator function. The final representation
of node v is expressed as z,, as shown in line 8 in Algorithm 1.

In order to learn representations in a fully unsupervised setting, we apply a
graph-based loss function:

Jg (Zu) = - log (U (lev)) - Q : ]EvnNPn(v) log (U (7zq—4rzvn)) ) (3)

where v is a node that co-occurs near u on fixed-length random walk, o is
the sigmoid function, P, is a negative sampling distribution, and @) defines the
number of negative samples.
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4.3 Relationship Strength Change Computation

After learning the embeddings of nodes in graphs, we aim to obtain the relation-
ship strength. Here, we use the embedding vector obtained by the GNN model
as the key feature of the relationship strength change computation.

We select cosine similarity to calculate the relationship strength because we
are more interested in the directional similarity of different embeddings than in
the absolute values. The relationship strength between u and v in Gy, denoted
as rs¢(u,v), can be presented as:

27
_ R 4
rae(t V) = e T )

The relationship strength change between v and v from G; to G¢41, denoted as
d0t(u,v), can be calculated as follows:

0t (u,v) = |rsepr(u,v) — rse(u,v)|. (5)

Thus, the cumulative relationship strength change between u and v in
the dynamic network is given as follows:

g1

A(u,v) = Z 3¢ (u,v). (6)

5 Drastic Group Mining

Based on the relationship strength change between nodes by the MRSCN model,
we can further mine drastic groups. In this section, we introduce our top-k e-
drastic group mining method.

Definition 1. e-drastic group. A set of nodes C C G is called e-drastic group if
the following conditions holds: (1) Yvy,vy € C, cumulative relationship strength

change A(v1,v2) > €; (2) |C| is mazimized; (3) 3, ,,ccA(v1,v2) is mazimized.

e-drastic group mining problem has two optimization objectives, namely large
coverage and a large sum of relationship strength changes. In reality, they can’t
be satisfied simultaneously. We consider the problem in the following two cases:
(1) priority to make the coverage as large as possible. (2) priority to make the
sum of relationship strength changes as large as possible. Based on these two
cases, the Coverage-First algorithm (CF) and Strength Change-First algorithm
(SCF) are proposed.

First, we need to generate all drastic groups that satisfy A(vy,ve) > € for
any two nodes v, vs in the drastic group, which consists of two steps. Firstly,
we need to generate a graph containing all the nodes that satisfy A(vy,vq) > €
for any two nodes vy, v in the graph. Secondly, we enumerate maximal cliques
on the graph to return all drastic groups. Many widely used maximal clique
enumeration algorithms can be adopted, such as BasicMCE [6].
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Table 1. Datasets statistics.

Dataset n=1|V||m=|E| T = |G| | Avg. Degree
Chess 7301 65053 25 17.82

Lkml 30665 | 197356 |24 12.87
Enron 66903 | 189353 |14 5.66
P2P-Gnutella | 23089 | 72131 9 6.25

Coverage-First Algorithm. First, all drastic groups are enumerated and
sorted in non-increasing order of their coverages. Drastic groups with the same
coverage are sorted in non-increasing order of their sums of cumulative relation-
ship strength changes. Second, all sorted drastic groups are scanned sequentially
based on the greedy strategy, i.e., the drastic group with the largest coverage
is always given priority. Suppose that K is the current result set and C' is the
current scanned drastic group that is being decided whether to be added into
K or not. If C overlaps too much with a drastic group C’in &, C might be dis-
carded. In order to evaluate the degree of overlap between C and C’, we propose

an indicator named the overlap ratio, denoted by |C@|C,|. Given a threshold «,

for C, if there exists a C’ such that ‘CpTlcll > o, C will be discarded. Finally,
top-k e-drastic groups can be gained from the result set K. The time complexity
of CF is O(nlogn), where n is the number of drastic groups.

Strength Change-First Algorithm. First, all drastic groups are enumerated
and then sorted in non-increasing order of their sums of cumulative relation-
ship strength changes, and drastic groups with the same cumulative relationship
strength change are sorted in non-increasing order of their sizes, which indicate
the coverages. Second, all sorted drastic groups are scanned sequentially based on
the greedy strategy. As with CF, the overlap ratio is used to evaluate whether
the drastic group is added to the result set K. We can obtain top-k e-drastic
groups from the result set K. The time complexity of SCF is the same as CF.

6 Experiments

6.1 Experimental Setup

We conduct experiments on four real-world datasets, including Chess, Lkml,
Enron and P2P-Gnutella, whose statistics are summarized in Table 1.

In our experiments, we compare MRSCN with three different categories of
methods, including DeepWalk [13], Node2Vec [8], GraRep [2] and DNGR [3].

Since most existing metrics are tailored for traditional graphs, we introduce
four goodness metrics evaluating drastic groups for dynamic networks, which are
motivated by separability, density, common neighbors and clustering coefficient.
Let C be the mining group. The descriptions of evaluation metrics are as follows.
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— Variability of Separability (VS) captures the intuition that the variability
of the separation between groups and the rest of the network is drastic for
the group with violent relationship strength changes between nodes: VS =

M1 1S(Grar) — S(Go)l, S(Gr) is given by: §(Gy) = HemiebuneCued)]

— Variability of Density (VD) catches the intuition that the group with vio-

lent relationship strength changes has drastic connection changes: VD

_ 2o, g (vy)

PN DS(Gir) — DS(Gy)|, DS(Gy) s given by: DS(Gy) = 2= mer—
where df(v;) denotes the degree of v; in the group C at ¢ timestamp.

— Variability of Common Neighbors (VCN) builds on the intuition that the

nodes in the group C with violent relationship strength changes have dras-

tic changes in common neighbors: VCN = ||g\| ! |CN(Gt+1) — CN(Gy)|,
‘o . _ 2 INZ2 (vi,0;)]
CN(G,) is calculated as: CN(G,) = [CI(CT=1) Evi,vjec VINE o) I INEZ o)

— Variability of Clustering Coefficient (VCC) is based on the premise that the
connection in pair of nodes with common neighbors in C changes drasti-
Cally vee = Y9 coGy ) — CO@Gy)), COGy) is given by: CO(Gy) =

|C‘ Yo |%\, where #edge(Ny(v;,C)) is the number of edges
3 J J

in C whose two end nodes are v;’s neighbors in C.

Intuitively, the group with drastic relationship strength changes between nodes
should have high VS, VD, VCN and VCC values.

6.2 Experimental Results

Exp 1. Effectiveness of the e-Drastic Group Mining. In this experiment,
we study the effectiveness of the e-drastic group mining. We use the SCF algo-
rithm to evaluate the effectiveness. Table 2 shows the performance of our method
compared with other methods.

From the results, we can see that MRSCN performs better than other meth-
ods in general. For example, compared to the most powerful compared method
DNGR, our MRSCN model reaches nearly 11.1%, 14.8% and 8.1% gain at VD,
VCN and VCC, respectively. The experimental results demonstrate that MRSCN
has a solid ability to mine relationship strength changes. This is due to the
effectiveness of capturing both global structure information and local structure
information. In terms of VS, our method has few obvious advantages.

Exp 2. Impact of Parameters. In this part, we analyze the impact of two
key parameters in our method, i.e., the embedding dimension d and e. Figure 3
describes the results of our method with varying parameters on VS, VD and
VCC in Chess and Lkml, respectively. Similar results can also be observed in the
other datasets. VCN follows the same trend as VD and VCC. We first illustrate
the performance under various settings of embedding dimension while keeping
other parameters fixed, as shown in Fig. 3(a) and Fig. 3(c). We can see that the
performance of our method on VD and VCC improves as the embedding size
increases and gradually becomes stable when the embedding size increases.
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Table 2. Results of the e-drastic group mining.

Methods | Chess Lkml

VS VD VCN | VCC | VS VD VCN | VCC
DeepWalk | 0.255 | 0.255 |0.347 |0.512 |0.324 | 0.315 | 0.341 |0.367
Node2Vec | 0.281 |0.405 |0.424 |0.508 | 0.310 | 0.356 |0.385 |0.387
GraRep 0.311 | 0.466 |0.403 |0.554 |0.280 | 0.349 |0.412 |0.449
DNGR 0.325 |0.468 |0.429 |0.543 |0.314 |0.377 |0.403 | 0.436
MRSCN | 0.387|0.520 | 0.494 | 0.587 | 0.356 | 0.423 | 0.465 | 0.532
Methods | Enron P2P-Gnutella
VS VD VCN | VCC |VS VD VCN | VCC
DeepWalk | 0.276 |0.208 | 0.207 |0.412 |0.257 |0.213 |0.216 | 0.336
Node2Vec | 0.355 |0.261 |0.231 |0.398 |0.290 |0.209 | 0.230 | 0.342
GraRep [0.376|0.254 |0.323 | 0.404 |0.315|0.218 |0.243|0.393
DNGR 0.314 1 0.266 |0.284 |0.436 |0.287 |0.225 |0.207 |0.341
MRSCN | 0.358 |0.318 | 0.326 | 0.547 | 0.266 | 0.246 | 0.228 |0.354
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Fig. 3. Effectiveness of our method with varying parameters on datasets.

However, we can see from Fig.3(b) and Fig.3(d) that both VD and VCC
values in different settings of parameter € are irregular, because it cannot guar-
antee that the total relationship strength change of the group increases with the
increase of e.

Exp 3. Ablation Study. To get a better understanding of how different com-
ponents affect the performance of MRSCN, we conduct ablation tests on three
datasets with one variant: MRSCN-G, which removes global features when gen-
erating the node embedding. In addition, we choose the best-performing DNGR
model as a comparison. The results w.r.t. VD and VCC are shown in Fig. 4.

We can find that the method performs better by combining global features,
which shows that capturing global structure information is able to mine relation-
ship strength changes more effectively. Moreover, we find that the basic GNN
model works better than DNGR. The experiment demonstrates the effectiveness
of mining the relationship strength changes between nodes by jointly considering
global and local structure information.
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Fig. 4. Performance comparison with variants of our method on three datasets.

7 Conclusion

In this paper, we propose a novel GNN-based model for Mining Relationship
Strength Changes between Nodes in dynamic networks, named MRSCN. We use
random walk and pointwise mutual information to capture the global structure
information. After that, we learn the reasonable relationship strength change
by GNN. Based on MRSCN, we propose the e-drastic group model and develop
mining algorithms. We conduct experiments on real-world datasets. The results
demonstrate the effectiveness of MRSCN and the drastic group mining method.
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