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Abstract. Information diffusion prediction, as a fundamental task in
social network analysis, aims to identify potential users who are likely
to participate in an information diffusion process. Most existing works
learn user representations based on the collected social network data
and then complete downstream prediction tasks. However, due to data
privacy protection and low data quality, these methods are always lim-
ited by weak information issues of the social network data. For exam-
ple, incomplete network structure, sparse labels, and insufficient features
severely obstruct user representation learning. To mitigate these issues,
we design an effective two-stage method MGCL. In the first stage, an
enhanced representation is learned for every user even though the social
network is with weak information. A multiplex heterogeneous network
is adaptively constructed to enrich social network information. To facili-
tate user representation learning under sparse labels and insufficient fea-
tures, we further propose self-supervised training specifically tailored for
social networks with weak information. In the second stage, the cascade
representations are learned using the multi-head self-attention network
for information diffusion prediction. Extensive experiments on four real-
world datasets validate that MGCL always outperforms state-of-the-art
methods.

Keywords: Social networks analysis · Information diffusion
prediction · Graph representation learning · Contrastive learning

1 Introduction

With the rapid development of the mobile Internet, social network platforms
have become the most important place for people to obtain and share informa-
tion. Information diffusion prediction is a fundamental task in social networks,
which can assist in understanding the evolution of trending topics and has many
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important applications, such as public opinion analysis [1], fake news control [2],
and online social marketing [3].

Information diffusion prediction is to identify potential users who are likely to
participate in information sharing, e.g., re-tweets. Existing methods can be clas-
sified into two categories: predefined model-based methods and cascade learning-
based methods. Predefined model-based methods artificially design various prop-
agation models [4] (e.g., SIR model) to predict which users will be involved in
the information diffusion. However, these methods may not be strictly consis-
tent with information propagation in the real world. To address this limitation,
cascade learning-based methods have been proposed recently. An information
diffusion cascade is a sequence of tuples (vx, tx), where vx is a user who partici-
pates in this propagation and tx is her/his participation time. On the one hand,
some works focus on extracting the macro-level features, such as user statistics
or information contents, to predict the overall growth of cascade size [5,6]. On
the other hand, some methods aim to predict the next user that will participate
in this cascade based on representation learning. These methods utilize vari-
ous techniques such as GNNs and RNNs to learn users’ social relationships and
sequential cascade interaction [10–13] for information diffusion prediction.

Despite the improvements made in describing the user social homogeneity
and cascade interaction, existing methods still suffer from three critical lim-
itations: (1) Existing works are designed on the fundamental assumption that
observed social network data contains complete and sufficient information. How-
ever, in the real world, these data suffer from extremely weak information issues,
manifested by incomplete structure, sparse labels, and insufficient user features.
Such low-quality data severely obstructs learning user representations. (2) All
existing methods only utilize cascade sequences as the prediction-oriented objec-
tive to jointly learn social networks and information diffusion cascades, which is
insufficient for learning reliable user representations of the social network and
further results in suboptimal prediction performance. (3) Existing end-to-end
methods all use the full-graph training pipeline for the entire social network,
which is straightforward but significantly restricts practical flexibility.

To address these limitations, we propose a novel two-stage method MGCL
for information diffusion prediction. In the first stage, an enhanced representa-
tion can be learned for every user even though the social network only has weak
information. On the one hand, by leveraging the relationships of users’ follower-
followee and historical participation behavior, a multiplex heterogeneous social
network is constructed to enrich the structure information in the original social
network and then an adaptive early-fusion strategy is well-designed to ensure
a reliable adjacency matrix for graph learning. On the other hand, to facilitate
user representation learning under sparse labels and insufficient features, we pro-
pose self-supervised training specifically tailored for social networks with weak
information and further design contrastive learning tasks at the user and prefer-
ence level respectively. Our method can effectively mitigate the challenges posed
by weak information issues to user preference modeling and thereby improve the
performance of downstream prediction. Moreover, we employ an inductive graph
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learning method with the mini-batch setting that can cope with the graph struc-
ture changing and is more flexible for model training. In the second stage, the
cascade representations are learned using the multi-head self-attention network
for the downstream information diffusion prediction task.

The main contributions of this paper are summarized as follows:

(1) We propose an effective method to enhance the original social network by
integrating users’ historical behavior into a multiplex heterogeneous social
network and designing an adaptive early-fusion strategy to ensure a reliable
user adjacency matrix for graph learning.

(2) We design a novel multi-level graph contrastive learning method that can
provide more sufficient self-supervised signals for graph learning. In this way,
our method can obtain more expressive user representations even if it does
not have user features and labels.

(3) We conduct extensive experiments on four real-world datasets. The results
show that: (i) MGCL can enable more effective supervision for graph learn-
ing and further effectively improve prediction performance. (ii) In various
scenarios, MGCL consistently outperforms the state-of-the-art methods.

2 Preliminaries

Definition 1. (Information Diffusion Cascade). An information diffusion
cascade Ck with k users is a sequence of k tuples, i.e., Ck = ((v1, t1), (v2, t2), . . . ,
(vk, tk)), where vx �= vy and tx ≤ tx+1. Each tuple (vx, tx) is called a “participa-
tion” indicating that user vx is the x-th participant in information diffusion and
the participation time is tx.

The information diffusion process can be regarded as a communication chain.
An information diffusion cascade records the complete journey of a specific piece
of information spreading through the social network. In information diffusion
prediction, Ck is used as an input to predict the next participation (vk+1, tk+1).

Definition 2. (Ideal Social Network). We define the ideal social network
as social network data that contains sufficient information. Let the ideal social
network be D̂ = (Ĝ, ŶL) = ((V, Ê , X̂), ŶL), where Ê is an ideal edge set con-
taining all relevant links between users, X̂ is an ideal feature matrix containing
all informative features for each user, and ŶLis an ideal label matrix containing
sufficient labels (with number n̂L) for learning tasks with balanced distribution.

In real-world scenarios, there often is insufficient data for model training and
deployment [14]. Specifically, the structure can be incomplete with an incomplete
edge set Ě � Ê that contains limited edges to provide sufficient information.
Meanwhile, some critical elements in the feature matrix are missing, which can be
represented by an incomplete feature matrix X̌ = M�X̂, where M ∈ {0, 1}n×d is
the missing mask matrix. Besides, the available labels for training can be scarce,
resulting in an insufficient label matrix Y̌L with training number ňL � n̂L.
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Definition 3. (Weak Social Network). Due to privacy security issues, weak
social networks usually do not have user features and labels, and observed rela-
tionships are always incomplete, further exacerbating the challenges. Let social
network data with weak information be Dx = ((V, Ě , X̌), Y̌L). The target is to
learn the representation of users V with Dx for model training.

In this paper, we confront a more challenging scenario wherein the structure,
features, and labels exhibit serious deficiencies. Specifically, manual labels are
absent for all users, initial user features are randomized, and observed user rela-
tionships are extremely incomplete. The sole additional information available is
users’ historical participation in information diffusion processes.

Definition 4. (Multiplex Heterogeneous Network). A multiplex heteroge-
neous network can be denoted as G = (V,E), where V and E are the sets of
nodes and edges respectively. φ : V → O is a node type mapping function and
ψ : E → R is an edge type mapping function, where O and R represent the sets
of node types and edge types respectively, and they satisfy |O| + |R| > 2, |R| > 1.
Different from traditional heterogeneous networks, there exist multiple edges with
different types between two nodes, i.e. E ⊆ V × V × R.

In the real world, a social network inherently involves multiple types of com-
plex relationships between users and thus it can be modeled by a multiplex
heterogeneous network. For instance, follower-followee relationships on platforms
such as Twitter constitute one type of edge. Moreover, users engaging in the same
information diffusion events can be viewed as another type of edge, signifying
shared interests in specific trending topics. This multiplex heterogeneous net-
work, comprising multiple types of relationships, can offer more comprehensive
information conducive to mitigating weak information issues.

Problem Formulation. The task of information diffusion prediction is to pre-
dict the next participation (vk+1, tk+1) based on the current information diffusion
cascade Ck. Formally, the prediction task is to select an optimal vx from V \Vk,
to maximize the following conditional likelihood, as the next participant vk+1.

v̂x = arg max P (vx|G,Ck), vx ∈ V \Vk (1)

where Vk is the set of vertices in Ck, G is the social network and Ck is the
information diffusion cascade sequence.

3 Methodology

Overview. The overall architecture of MGCL is shown in Fig. 1. Specifically,
MGCL is a two-stage model designed for the information diffusion prediction
task. In the first stage, a multiplex heterogeneous social network is constructed
adaptively, taking into account both the original relationships of users’ follower-
followee connections and their historical participation. This enhanced structure
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mitigates weak information issues present in the original social network. Sub-
sequently, we design three self-supervised tasks that can contribute to adaptive
graph construction and effective graph learning. In this way, we can obtain bet-
ter user representations for the downstream prediction even if it does not have
user features and labels. In the second stage, we further exploit the multi-head
self-attention network to learn the information diffusion cascade for prediction.

Fig. 1. The overall architecture of the proposed method MGCL.

3.1 Multiplex Heterogeneous Graph Learning

Adaptive Graph Construction. An ideal graph structure is the basis for
graph learning. However, the weak social network hinders the graph encoder’s
ability to capture crucial dependencies between users and leads to biased user
representations [14]. By leveraging the assumption that user dependencies mir-
ror real-world information diffusion patterns, we propose an adaptive graph con-
struction method to enhance the original social network. On the one hand, users’
historical participation relationship indicates which users prefer to participate
in the same information diffusion and prediction task can benefit from it. Given
an information diffusion cascade Ck and an integer h, an edge (vx, vx+i) will be
built for every i ≤ h and every vx and vx+i in Ck. For example of h = 3, three
edges (vx, vx+1), (vx, vx+2), and (vx, vx+3) are created for every vx in Ck, where
1 ≤ x ≤ k−3. We can select an appropriate h to state users’ historical participa-
tion. On the other hand, the follower-followee relationships can be treated as two
types of edges due to the limitation of graph convolution on directed graphs. For
example, user vy is a follower of user vx, thus (vy, vx) and (vx, vy) are created to
represent the follower and followee relationship respectively. The intuitive mean-
ing behind that is followers are usually influenced by their followees but not vice
versa and it reveals the different influential roles of users.

For each edge type r ∈ R, a “projection” of a multiplex heterogeneous net-
work G on edge type r, denoted as Gr = (V,Er), is a subgraph of G consisting
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of all the nodes in V and all the edges in Er, where Er = {e|e ∈ E ∧ ψ(e) = r}.
Each Gr (1 ≤ r ≤ |R|) only focuses on one type of relationship in G. We use Ar

to denote the adjacency matrix of Gr. To adaptively integrate and enhance mul-
tiplex heterogeneous relationships between users, we utilize the relation-aware
weights βr to aggregate the adjacency matrix of different projections as follows:

Â =
|R|∑

r=1

βrAr (2)

where βr (1 ≤ r ≤ |R|) is a learnable relationship weight. We use the softmax
function to ensure

∑|R|
r=1 βr = 1. In this way, the weights imply the importance

of different types of relationships, and thus the aggregated adjacency matrix Â
can characterize the multiplex heterogeneous relationships among users.

Inductive Graph Encoder. In this paper, we use the inductive GraphSAGE
[16] as the basic graph encoder to propagate the node message exploiting the
multiplex heterogeneous social network Â. The message propagation and aggre-
gation at the t-th layer of the graph neural network are as follows:

α(t)
vi

= Aggregate(t)({h(t−1)
vj

: vj ∈ Nvi
}) (3)

h(t)
vi

= Update(t)(α(t)
vi

, h(t−1)
vi

) (4)

where Nvi
denotes the set of vi’s neighbors in Â, h

(t)
vi denotes the representation

of vi at the t-th GNN layer. h
(0)
vi is the initial user embedding randomly generated

by the normal distribution. Aggregate(·) is the function aggregating the neigh-
borhood information of a central node vi, and Update(·) is the function that com-
bines neighborhood information to update the node embedding. In this paper,
we use weighted aggregation as the neighborhood aggregation function based on
the weight of relationships in the adjacency matrix Â. We denote the embed-
ding at the last layer as the final user representation, which can be used as an
input for subsequent information diffusion prediction.

3.2 Self-supervised Graph Training

Previous works entangle graph training and the downstream prediction task for
end-to-end learning, but this joint training pipeline has two serious limitations:
(1) The supervision signal of joint training predominantly focuses on down-
stream prediction, overlooking crucial supervision for the social network itself.
(2) The joint training pipeline necessitates preloading the entire social network to
acquire extensive representations of all users and subsequently perform lookups
during downstream tasks. This unnecessary overhead constrains the practical
flexibility of GNN-based methods. To achieve more efficient and effective graph
learning, we design mini-batch self-supervised objectives to supervise graph con-
struction and user representation learning. Subsequently, these representations
can be projected into the downstream model for improved prediction.
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Graph Structure Regularization. A critical foundation of graph learning is
to generate a more reliable adjacency matrix Â that requires effective learning of
βr in Eq. (2). However, without proper supervision, the adaptive strategy may
result in sub-optimal solutions, i.e., the quality of the constructed graph may
not be consistent with the preferences exhibited by users in actual information
diffusion participation. Inspired by [18], we leverage co-occur patterns in his-
torical cascades as supervision to conduct graph structure regularization. This
method capitalizes on the reasonable observation that frequently co-occurring
users in historical cascades often share similar preferences, making it a natural
and effective supervision for constructing a reliable graph structure.

We first precalculate the co-occur pattern Pi ∈ NN for each user vi, where
the co-occur weight to the j-th user equals the total frequency that vi and vj

participate in the same information diffusion in all historical cascades. Further-
more, we transform Pi to the discrete distribution Ti ∈ NN by row normalization
and softmax operation. We formalize the regularization of graph structure as the
KL divergence between the approximate distribution of each user from the adja-
cency matrix Â and its corresponding distribution Ti of co-occur regularity,
which indicates the discrepancy between these two distributions. In practice,
we transform each row Âi of Â to the approximate distribution with softmax
operation and compute the regularization term Lcon as:

Lcon =
1
N

N∑

i=1

KL(Ti||softmax(Âi)) (5)

This graph structure regularization objective ensures a refined graph structure,
consequently mitigating the challenges posed by weak information issues. More-
over, the learned graph structure Â explicitly captures the pertinent dependen-
cies between users in real-world scenarios, which is more beneficial for prediction.

Multi-level Contrastive Learning. Then we can conduct graph encoder
training on the constructed multiplex heterogeneous social network. Motivated
by the principle that user representations should be consistent with their inher-
ent preferences in information diffusion, we introduce a novel multi-level graph
contrastive learning method with the mini-batch setting, which operates on two
different levels: user-level and preference-level.

As shown in Fig. 2, denote the distance between the representations of vi in
different views as du, the distance between vi and another user vj with similar
preferences as ds, and the distance between the user and another user vk with
quite different preference as df . Note that the generated user representations
can be different due to input graph structure differences, i.e. 0 < du. Mean-
while, excessively increasing du will result in overlapping between users with the
other and therefore lead to suboptimal results, i.e. du < {ds, df}. Furthermore,
user representations with similar preferences should have smaller distances than
those with larger differences, i.e. ds < df . To further refine our distance consider-
ations, we introduce dδ representing the approximate boundary of the preference
decision area of vi. Ideally, the representation of user vi should be distributed at
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Fig. 2. Here is an example of multi-level contrastive learning.

the center of the area, and then ds can be approximated as the distance from hj

to the center of the area. Therefore, we strive to maintain ds ≤ dδ (or ds ≈ dδ),
ensuring hj resides within the appropriate boundary.

In summary, the total goal can be further described as:

0 < du < ds ≤ dδ < df (6)

Based on the guidance of this goal, we can generate positive samples and negative
samples within a mini-batch. Then we take user vi as an example to introduce
the detailed generation strategy. Given the representation hi of user vi learned
from the constructed multiplex heterogeneous social network as a query .

Positive Key Generation. In Sect. 3.1, we enhance the original social network
by integrating the original structure and historical participation. Although the
graph structure is not the same, the user representations in the original social
network and the enhanced social network should be similar. Therefore, we also
learn the original social network using the shared graph encoder. In this way, we
can obtain the original user representation h∗

i as the positive key.

Negative Key Generation. Initially, we treat all representations of other in-
batch samples as its negative keys, where kneg(i) = {hj , h

∗
j}j=1...n,j �=i. However,

this does not represent the crucial link between user representations and their
actual information diffusion behavior. Furthermore, kneg(i) can be divided into
two groups according to the co-occur pattern Pi ∈ NN :

kdiff (i) = {k ∈ kneg(i) : Pi,k < δ} (7)
ksame(i) = {k ∈ kneg(i) : Pi,k ≥ δ} (8)

where kdiff (i) is the group of users who do not frequently co-occur with user vi in
this batch, and ksame(i) is the opposite. In this way, these two groups of users can
respectively represent two types of users with different and similar preferences
as user vi in information diffusion. This in-batch generation of positive and
negative examples ensures the scalability of our method. Now given the query hi

with its positive key h∗
i and negative keys kneg(i) = {kdiff (i), ksame(i)}, we can

introduce the user-level and preference-level contrastive loss as follows.
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User-level Contrastive Loss. We aim to guarantee 0 < du < {ds, df} at the
user level. To achieve this, we design an InfoNCE-based loss as follows:

Lucl = − 1
N

N∑

i=1

(
log

f(hi, h
∗
i )

f(hi, h∗
i ) +

∑
j �=i f(hi, h∗

j )

)
(9)

where f(a,b) = esim(a,b)/τ , sim(·, ·) is the cosine similarity, and τ is temperature
coefficient. Note that taking f(hi, h

∗
i ) as the denominator can ensure 0 < du.

Preference-level Contrastive Loss. At the preference level, our goal is to
satisfy 0 < {ds, dδ} < df . If depict the exact preference boundary of user vi, we
should calculate for each user in ksame(i), but this is quite time-consuming.
Therefore, we introduce the preference prototype. For each user vi, we acquire
its preference prototype pi, p

∗
i = MEAN(ksame(i)), which are correlated to the

preference boundary dδ. The preference-level contrastive loss can be defined as:

Lpcl == − 1
N

N∑

i=1

(
log

f(hi, pi)∑
j∈kdiff (i) f(hi, hj)

+ log
f(hi, p

∗
i )∑

j∈kdiff (i) f(hi, h∗
j )

)
(10)

where f(a,b) is the same as Eq.(9). Lpcl increases the agreement between the
user and its similar users, which explicitly incorporates the crucial link between
user representations and their actual information diffusion behavior.

Overall Training Objective. Graph Structure Regularization and Multi-level
Contrastive Learning are all formulated for a single node, eliminating the need
to preload the entire graph. So the overall graph training objective is:

Lgraph = γ1Lcon + γ2Lucl + γ3Lpcl (11)

where γ1, γ2, γ3 are the hyper-parameter. In each mini-batch, we randomly sam-
ple n nodes to calculate Lgraph. In this way, we can simultaneously achieve better
graph construction and better graph learning, which provides an effective and
comprehensive solution for learning the weak social network.

3.3 Information Diffusion Prediction

In this section, we aim to convert the user representation sequence into the
cascade representation for information diffusion prediction. Here we employ
the basic multi-head self-attention mechanism [17] and eschew more complex
encoders, which emphasizes the effectiveness of our proposed graph learning
method.

Cascade Interaction Encoder. We first look up user representations Hk =
{hx |vx ∈ Vk} from multiplex heterogeneous graph encoder for the cascade Ck.
Then we encode position information to obtain H

′
k = {h′

x |vx ∈ Vk}, where h
′
x =
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[hx ||px ] and the px is a learnable position embedding. H
′
k is user representations

in Ck and preserves the relative sequential information of users.
We further employ the basic Multi-Head Attention (MHA) to model cascade

interaction. The MHA of the i-th attention head can be calculated as follows:

Qi = H
′
kW

Q
i ,Ki = H

′
kW

K
i ,Vi = H

′
kW

V
i (12)

MHAi(Qi ,Ki ,Vi) = softmax(
QiKi

T

√
d′ + M)Vi (13)

where d is the dimension of the embedding, B represents the number of heads,
d

′
= d/B, WQ

i , WK
i , and WV

i are learnable projection matrices. To avoid label
leakage, we introduce a mask matrix M ∈ Rn×n to block out future information
and achieve this via setting the upper triangle of the attention map with −∞.
We concatenate the outputs of B attention heads to form the output S as:

S = [MHA1|| . . . ||MHAB ]WO (14)

where || is the concatenation operation, and WO is the transformation matrix.
To introduce non-linearity to the MHA, we use a position-wise feed-forward

network, allowing it to model complex dependencies within the cascade:

Z = (ReLU(SW 1
t + b1t ))W

2
t + b2t (15)

where W 1
t , W 2

t , b1t , and b2t are learnable parameters, Z ∈ Rk×d is the final
information diffusion cascade representation.

Prediction. After that, we calculate the probability ŷ ∈ R|Ck|×|V | of the next
participant using a softmax function:

ŷ = softmax(WpZ + Mask) (16)

where Wp maps Z to user-specific space, Mask is used to mask users who have
participated in information diffusion before prediction. Finally, we can use the
cross-entropy function to supervise the training of cascade prediction:

L(θ) = −
|Ck|∑

j=2

|V |∑

i=1

yij log(ŷij) (17)

in which θ denotes all parameters needed to be learned in the model, if the user
vi participates in cascade Ck at the step j, yij = 1, otherwise yij = 0.

4 Performance Evaluation

In this section, we conduct extensive experiments to evaluate the performance
of our MGCL model and answer the following Research Questions (RQs):

RQ1: How does the proposed model perform compared to baseline models?
RQ2: How do the critical components affect the model performance?
RQ3: How do the different hyperparameter settings affect the performance?
RQ4: How does the proposed model perform under different practical scenarios?
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Table 1. Statistics of the four used datasets.

Datasets Twitter Douban Android Christianity

# Users 12,627 12,232 9958 2897

# Links 309,631 396,580 48,573 35,624

# Cascades 3442 3475 679 589

Avg. Len. 32.60 21.76 33.30 22.90

4.1 Experimental Settings

Datasets. We study the model performance using four real-world social net-
work datasets, i.e. Twitter [27], Douban [28], Android [10], and Christianity
[10]. These datasets are widely used and each contains the social network and
information diffusion cascades. The descriptive statistics are in Table 1.

Evaluation Metrics. According to the problem formulation, the prediction
task can be regarded as a retrieval problem. Therefore, we choose the widely used
Hits rate on top-k (Hits@k) and Mean Average Precision on top-k (MAP@k) to
evaluate the performance, where k ={10, 50, 100}.

Compared Methods. We compare our method with seven recent information
diffusion prediction methods. Topo-LSTM [7] and NDM [8] utilize RNNs and
CNNs to effectively capture the dependencies inherent in the diffusion cascade.
SNIDSA [9], Inf-VAE [10] and FOREST [11] employ GNNs to learn users’
social relationships and utilize RNN to explore the context of cascades for pre-
diction. DyHGCN [12] and MS-HGAT [13] focus on integrating various user
relationships and then designing novel GNNs for user representation learning.

Implementation Details. The experiments are conducted using PyTorch on
a 24GB NVIDIA TITAN RTX GPU. For each dataset, we split these cascades
by 8:1:1 for training, validation, and testing. The maximum cascade length is set
to 200. To avoid information leakage, we use the training data as the historical
cascades. We set the embedding dimension d = 128 and the attention head
B = 6. For the model training, the AdamW optimizer is chosen, initialized with
a learning rate of 5e-4 and a weight decay coefficient set to 0.01. The training
configuration includes a batch size of 32 and a dropout rate of 0.3. The maximum
number of training epochs in the downstream task is set to 50, and we early stop
after 3 consecutive epochs without observed improvement on the validation set.
The number of training epochs in the graph training is chosen from 4 to 8. The
settings for the baselines remain consistent with the original papers.
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Table 2. The performance on Hits@k metrics (%), scores are the higher the better.

Models Twitter Douban Android Chiristianity

@10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

TopoLSTM 8.45 15.80 25.42 8.57 16.53 21.47 4.56 12.63 16.53 12.28 22.63 31.52

NDM 15.21 28.23 32.30 10.00 21.13 30.14 4.85 14.24 18.97 15.41 31.36 45.86

SNIDSA 25.37 36.64 42.89 16.23 27.24 35.59 5.63 15.22 20.93 17.74 34.58 48.76

Inf-VAE 14.85 32.72 45.72 8.94 22.02 35.72 5.98 14.70 20.91 18.38 38.50 51.05

FOREST 28.67 42.07 49.75 19.50 32.03 39.08 9.68 17.73 24.08 24.85 42.01 51.28

DyHGCN 31.88 45.05 52.19 18.71 32.33 39.71 9.10 16.38 23.09 26.62 42.80 52.47

MS-HGAT 33.50 49.59 58.91 21.33 35.25 42.75 10.41 20.31 27.55 28.80 47.14 55.62

MGCL 34.28 51.79 62.47 21.37 35.44 43.27 10.79 21.43 29.35 31.70 50.22 60.17

Table 3. The performance on MAP@k metrics (%), scores are the higher the better.

Models Twitter Douban Android Chiristianity

@10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

TopoLSTM 8.51 12.68 13.68 6.57 7.53 7.78 3.60 4.05 4.06 7.93 8.67 9.86

NDM 12.41 13.23 14.30 8.24 8.73 9.14 2.01 2.22 2.93 7.41 7.68 7.86

SNIDSA 15.34 16.64 16.89 10.02 11.24 11.59 2.98 3.24 3.97 8.69 8.94 9.72

Inf-VAE 19.80 20.66 21.32 11.02 11.28 12.28 4.82 4.86 5.27 9.25 11.96 12.45

FOREST 19.60 20.21 21.75 11.26 11.84 11.94 5.83 6.17 6.26 14.64 15.45 15.58

DyHGCN 20.87 21.48 21.58 10.61 11.26 11.36 6.09 6.40 6.50 15.64 16.30 16.44

MS-HGAT 22.49 23.17 23.30 11.72 12.52 12.60 6.39 6.87 6.96 17.44 18.27 18.40

MGCL 22.96 23.55 23.79 11.76 12.64 12.81 6.76 7.20 7.31 18.81 19.64 19.80

4.2 Overall Performance (RQ1)

To evaluate the effectiveness of our proposed MGCL, we compare the overall pre-
diction performance of MGCL with the seven recent baselines. The experimental
results are summarized in Table 2 and Table 3.

Specifically, we have the following observations: First, compared to the best
baseline MS-HGAT, our MGCL adaptively constructs a multiplex heterogeneous
social network to mitigate weak structure present in the original social network
and conduct the multi-level contrastive learning that can provide more self-
supervised signals for graph learning. As a result, MGCL achieves more expres-
sive user representations and consistently outperforms all baseline models in Hits
and MAP scores. Second, these methods that incorporate multiple user rela-
tionships (DyHGCN, MS-HGAT, and MGCL) show better performance than
social-only methods (SNIDSA, FOREST, Inf-VAE), while cascade-only meth-
ods (Topo-LSTM, NDM) show the worst performance. This underscores the
importance of sufficient social network information for downstream prediction.

4.3 Ablation Study (RQ2)

To investigate the effect of each component on the MGCL, we compare different
variants with the original model. Specifically, w/o GE only uses the original
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social network without enhancing the graph. w/o GC replaces adaptive rela-
tionships aggregation with average aggregation. Furthermore, we remove our
graph training objectives to obtain w/o Lcon, w/o Lucl, and w/o Lpcl.

Table 4. Performance of MGCL with its variants.

Models Twitter Android

H@100 M@100 H@100 M@100

MGCL 62.47 23.79 29.35 7.31

w/o GE 59.82 21.03 28.11 6.97

w/o GC 61.45 20.82 29.18 7.24

w/o Lcon 60.59 19.23 28.50 7.02

w/o Lucl 61.46 21.12 29.11 7.25

w/o Lpcl 60.45 23.01 28.74 7.13

As shown in Table 4, MGCL achieves the best performance compared to any
of its variants. Specifically, we can observe the following: First, utilizing the origi-
nal social network leads to a significant degradation in performance, highlighting
the detrimental impact of an incomplete social network on user learning. Second,
employing the average aggregation of various user relationships also diminishes
performance, underscoring the complexity of relationships. Our structure regu-
larization can ensure that the enhanced structure aligns more closely with real-
world scenarios. Third, there is a significant performance degradation upon the
removal of either the user-level or preference-level contrastive learning objective,
confirming the crucial role of self-supervised signals in graph learning.

4.4 Hyperparameter Analysis (RQ3)

We study four important hyperparameters γ1, γ2, γ3 in Eq. (11) and δ in Eq.
(7), which determine the effectiveness of the three self-supervised graph learning
objectives we proposed in this paper.

Fig. 3. Impact of different hyperparameters on Twitter.

Figure 3 shows the effect of hyperparameters on the Twitter dataset, the
weight γ1 of the graph regularization is vital to enhance social network struc-
ture. The weight γ2 determines the distance between the user and others, which
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is more important for the prediction precision. γ3 and δ determine the user’s
preference dependence, and excessively bringing similar users closer will lead
to an overly dense distribution of user representations, resulting in suboptimal
performance.

4.5 Performance in Different Scenarios (RQ4)

The Performance of High-ranking Position. In some specific scenarios,
where precise identification of the evolution of information diffusion is crucial,
there is a heightened requirement for more accurate prediction. To address this
need, we investigate the performance of high-ranking position prediction.

Table 5. The performance of High-ranking position.

Datasets Models H/M@1 H@3 M@3 H@5 M@5

Twitter MGCL 15.91 24.77 19.88 28.69 20.63

MS-HGAT 15.46 23.40 18.95 26.81 19.73

Android MGCL 5.38 7.30 6.12 8.31 6.42

MS-HGAT 5.24 6.94 5.95 7.97 6.18

The results in Table 5 consistently demonstrate that MGCL outperforms
MS-HGAT in high-ranking position prediction. We attribute this superiority to
MGCL’s ability to effectively learn the real behavior of users in social networks.
In particular, multi-level contrastive learning of user representations greatly
enhances the understanding of users’ preferences in actual information diffusion,
leading to a substantial improvement in the precision of high-ranking position.

Impact of Cascade Interaction Data. We conduct comparative experiments
on Twitter and Android datasets under different training proportions and cas-
cade lengths to further prove the stability of our model.

Fig. 4. Impact of cascade interaction data.
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Referring to Fig. 4(a), we can observe that our model consistently achieves the
best performance across different cascade lengths. Notably, for shorter cascade
lengths, there is minimal degradation in performance compared to other models.
Furthermore, as shown in Fig. 4(b), MGCL achieves comparable performance to
the state-of-the-art model trained with less data. In conclusion, these results
demonstrate the effectiveness of MGCL learning from user relationships even
with extremely weak information issues.

5 Related Work

Graph Contrastive Learning. Graph data, often lacking labels, poses a chal-
lenge for current learning methods. Recently, contrastive learning has emerged
as a promising solution, which utilizes self-supervised strategies to achieve effec-
tive graph learning. DGI [21] extends InfoMax [22] to graphs and maximizes
MI between the global graph and local node. GraphCL [23] explores the impact
of various combinations of different data augmentations. GCA [24] proposes an
adaptive augmentation scheme at both topology and attributes. MVGRL [25]
introduces graph diffusion to create another view. However, applying to social
networks has certain challenges. For example, inappropriate data augmentation
introduces noise and distorts user dependencies, and existing methods lack con-
sideration of specific downstream tasks, limiting their effectiveness in practice.

Information Diffusion Prediction. Information diffusion prediction aims to
predict future participants based on the current cascade and relevant knowledge,
such as social networks, information content, and user profiles [19,20]. Recent
methods focus on learning user representations from sequential or structured
cascades using extended RNNs. For example, [7] extends the standard LSTM
to model the cross-dependency of cascades. [9] introduces structural informa-
tion into sequential information using RNN. However, these methods overlook
social relationships among users. Some works [10,11] further attempt to embed
social relationships to enhance prediction using GNNs. However, learning solely
from original social network data is too weak to capture users’ relationships. In
existing datasets, users lack manual labels, initial user features are random, and
the observed user relationships are incomplete. To fill this gap, we innovatively
enhance the social network structure and propose multi-level contrastive tasks
to obtain better user representations, which can benefit downstream prediction.

6 Conclusion

In this paper, we design a novel and effective two-stage framework named
MGCL. Different from existing works, we construct the multiplex heterogeneous
social network to enhance the original structure, and further design three self-
supervised training objectives to improve graph learning. This method miti-
gates weak information issues of social network data and enables higher-quality
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user representations to improve the performance of the downstream task. Exten-
sive experiments are conducted on four real-world datasets to validate that our
MGCL method can consistently outperform state-of-the-art methods.
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