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Abstract
Information diffusion prediction is fundamental for forecasting user
participation in information sharing on social networks, such as
retweets on Twitter. Existing methods typically extract user rela-
tionships from social networks and historical interactions, while
further capturing contextual information within the specific diffu-
sion process. However, these methods have several limitations: (1)
They often utilize sequential diffusion process for prediction and sim-
plify differentiated influences among participants; (2) They capture
user relationships on the entire graph for all users, in which most
information is not necessary for a specific diffusion process and is
too inefficient for real-world large-scale networks. To tackle these
limitations, we propose a novel and scalable model SILN, for sphere-
based information diffusion prediction on large social networks.
Specifically, SILN features three components. First, we integrate
two kinds of sphere effects in terms of structural and temporal
views, which learn an enhanced cascade representation. Second,
SILN designs an efficient learning scheme based on the cascade-
specific subgraph, which significantly reduces the entire graph
computation to smaller subgraphs. Third, to facilitate subgraph ex-
traction, we develop an optimized graph storage technique to allow
constant-time neighbor access and reduce the storage cost by about
30% in practice. Extensive experiments on six real-world datasets
validate that SILN consistently outperforms seven state-of-the-art
competitors in prediction performance while exhibiting exceptional
time and space efficiency on million-node social networks.

CCS Concepts
• Computing methodologies→ Knowledge representation and
reasoning; • Information systems→ Social networks.
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1 Introduction
Information diffusion prediction aims to identify potential users
who are likely to participate in information sharing (e.g., retweets
on Twitter), which is crucial for understanding topic evolution and
has many important applications, such as public opinion analy-
sis [24], fake news control [41], and online marketing [11]. Existing
information diffusion prediction methods can be broadly classi-
fied into three categories. 1) Probabilistic methods use probabilistic
distribution models [2, 10, 29, 40] (e.g., SIR models) to calculate
diffusion probabilities across all social links and then predict future
participants based on initial seed users. However, these methods are
often constrained by predefined and rigid parameters. 2) Cascade-
learning methods [14, 37, 42] consider each diffusion process as a
“cascade”. As shown at the top of Fig. 1, each cascade is a sequence of
tuples (𝑣𝑥 , 𝑡𝑥 ), where 𝑣𝑥 is a participant and 𝑡𝑥 is the participation
time. These methods exploit deep sequence models like RNNs and
Attention mechanisms to extract data-driven diffusion patterns for
prediction. 3) Graph-learning methods [30, 33, 44] design various
GNN-based models (e.g., heterogeneous graphs and hypergraphs)
to learn user relationships within global social networks, which
are often used to supplement the local cascade learning. Recently,
most models [4, 18, 28, 48] adopt a two-stage framework, which
integrates both graph learning and cascade learning to collectively
capture global user relationships and local diffusion patterns.

Despite the promising improvements, there remain two major
limitations: (1) Simplistic Utilization of Sequential Cascades.
Real-world information diffusion processes exhibit complex struc-
tural and temporal patterns, in which participants have different
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Figure 1: Example of the sphere effect in information diffu-
sion. A sphere-based cascade indicates who is structurally or
temporally relevant to Tim within the diffusion process.

influences on the diffusion process. However, most existing mod-
els [18, 28, 35, 48] consider the diffusion process as a sequential
cascade and treat all participants equally in diffusion prediction,
which limits their ability to capture the differentiated influences
among participants. For instance, a new participant in a diffusion
process is likely to be influenced only by those participants who are
socially or temporally relevant, while unrelated participants may
exert little to no influence. This sequential simplification fails to dif-
ferentiate the complex and unequal influences among participants.
Therefore, a key challenge is how to identify diverse influences
of participants from temporal and structural view for improving
the prediction. (2) Limited Efficiency and Scalability. Existing
models [4, 18, 28, 33, 44] need to compute embeddings for all users
on the entire graph and then retrieve corresponding embeddings of
participants when predicting a specific cascade. This workflow in-
curs expensive costs to process the entire graph, posing challenges
for large-scale networks. In fact, the entire graph embedding is
unnecessary for a specific cascade prediction because the 𝑙-hop
neighborhood contains sufficient information for a general 𝑙-layer
GNN model [12, 21, 34]. In addition, social network data often con-
tains noisy edges [6, 27]. Considering that each cascade involves
many participants and the cascade-specific subgraph needs to be ex-
tracted online, the online time cost of subgraph extraction becomes
a bottleneck. Moreover, the diffusion range is often unknown and
potentially widespread, and thus distributed processing for large-
scale graphs causes heavy cross-GPU transfer. A crucial challenge is
how to efficiently extract a well-selected cascade-specific subgraph
and compute embeddings without compromising performance.

In this paper, we propose a novel and efficient prediction frame-
work named SILN. For limitation (1), we utilize Sphere Effect
under structural-temporal dual view to enhance the cascade repre-
sentation for distinguishing participant influences in the diffusion
process for the first time. The sphere effect is an important phenom-
enon in media and communications [5, 8, 22, 23], which indicates
users are always involved in information diffusion influenced by
various social spheres. Each sphere represents a cluster of users
with similar influence characteristics on the diffusion process. This
paper considers two representative observations from structural
and temporal views, respectively. In the structural view, different so-
cial proximities typically have different influences and form distinct

spheres [15, 17]. Users are more likely to be influenced by those
spheres which are “closer” to them. In Fig. 1, Rose, as a one-hop
neighbor of Tim, typically has a more direct influence on Tim than
those users farther away. In the temporal view, participants with
similar characteristics tend to engage in the diffusion process at the
same temporal-stage, naturally forming spheres based on time prox-
imity [1, 3, 20]. In Fig. 1, John andMolly are the earliest participants,
suggesting that they are more likely to be opinion leaders, while
Tim is more likely to be an opinion follower, who joins the diffusion
at the last stage. By integrating both structural and temporal views,
SILN achieves a more nuanced understanding of the influence fac-
tors and significantly improves the prediction. For limitation (2),
we propose an efficient user embedding scheme based on the well-
selected cascade-specific subgraph, which reduces computation
from the entire graph to smaller sampled subgraphs (e.g., for the
Weibo dataset with 1.04M nodes, fewer than 1% of nodes need to be
processed online). Specifically, a multiplex relational sampler and
a relation-aware learning module are employed to generate high-
quality participant embeddings without sacrificing performance.
Furthermore, an optimized graph storage ensures constant-time
subgraph extraction (speedup of three orders of magnitude) and
reduces storage costs by approximately 30% in practice.
In summary, the main contributions of this paper are as follows:
• We formulate the sphere-effect-based information diffusion under
two representative views: structural and temporal. This is the first
attempt to integrate the real-world sphere effect into prediction.
By leveraging this phenomenon, SILN can effectively identify
the differentiated influences within diffusion processes.
• We design an efficient subgraph learning scheme with an opti-
mized graph storage, which significantly reduces the entire graph
computation to small cascade-specific subgraphs, and exhibits
excellent time and space efficiency on million-scale graphs.
• Extensive experiments on six real-world datasets validate that
SILN consistently outperforms seven state-of-the-art baselines.
For million-node social networks, all baselines cannot work (e.g.,
out of memory), whereas SILN still shows excellent performance.

2 Preliminaries
2.1 Concepts and Definitions
A social network can be represented as a directed graph𝐺 = (𝑉 , 𝐸),
where 𝑉 is the set of nodes and 𝐸 ∈ 𝑉 × 𝑉 is the set of directed
edges. Let 𝑁 = |𝑉 | and 𝑀 = |𝐸 | denote the number of nodes and
edges, respectively. In this paper, the concepts of “user” and “node”
are interchangeable for social networks.

Definition 1. (Information Diffusion Cascade). An information
diffusion cascade 𝐶𝑘 with 𝑘 users is a chronological sequence of
𝑘 tuples, i.e., 𝐶𝑘 = ((𝑣1, 𝑡1), (𝑣2, 𝑡2), . . . , (𝑣𝑘 , 𝑡𝑘 )), where 𝑣𝑥 ≠ 𝑣𝑦
for all 𝑥 ≠ 𝑦, and 𝑡𝑥 ≤ 𝑡𝑥+1 for all 1 ≤ 𝑥 < 𝑘 . Each tuple (𝑣𝑥 , 𝑡𝑥 )
represents a distinct participation event, indicating that user 𝑣𝑥 is
the 𝑥-th participant, with the participation time denoted as 𝑡𝑥 .

Information diffusion prediction typically uses the sequential
cascade 𝐶𝑘 as input to predict the next participant 𝑣𝑘+1. However,
these approaches do not fully account for the differentiated influ-
ence among participants. To address this, we introduce the concept
of a sphere-based cascade to better capture influence patterns.
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Figure 2: The overall framework of the proposed SILN.

Definition 2. (Sphere-based Cascade). A sphere-based cascade
S𝑘 is a partition of the cascade 𝐶𝑘 into distinct subsets (spheres),
i.e., S𝑘 = {𝑆1, · · · , 𝑆 |S𝑘 | }. Each sphere 𝑆𝑖 consists of users who
share a specific relationship 𝜋𝑖 with the participant 𝑣𝑘 . Formally,
𝑆𝑖 = {(𝑣𝑥 , 𝑡𝑥 ) | (𝑣𝑥 , 𝑡𝑥 ) ∈ 𝐶𝑘 , | |𝑣𝑥 , 𝑣𝑘 | | |= 𝜋𝑖 }, where | |𝑣𝑥 , 𝑣𝑘 | | |= 𝜋𝑖
denotes a relation paradigm, indicating that 𝑣𝑥 and 𝑣𝑘 satisfy the
specified relationship 𝜋𝑖 .

Each sphere 𝑆𝑖 contains participants who exert similar influence
on 𝑣𝑘 within the cascade𝐶𝑘 , characterized by the specified relation-
ship 𝜋𝑖 . This partitioning allows for a clearer understanding of why
𝑣𝑘 is involved in the diffusion process, with each sphere potentially
revealing different roles or degrees of influence to the participant
𝑣𝑘 . The relation paradigm | |𝑣𝑥 , 𝑣𝑘 | | |= 𝜋𝑖 can be formulated from
various views to quantify the influence of each sphere on 𝑣𝑘 .

2.2 Observation of Sphere Effect
Given a user 𝑣𝑘 , we investigate the sphere effect on 𝑣𝑘 by introduc-
ing specific forms of the relation paradigm. This is based on two
representative observations in structural and temporal views.
Structural View. The relation paradigm | |𝑣𝑥 , 𝑣𝑘 | | |= 𝜋𝑠

𝑖
in struc-

tural view is defined as 𝑑 (𝑣𝑥 , 𝑣𝑘 ) ∈ 𝜋𝑠𝑖 , where 𝑑 (𝑣𝑥 , 𝑣𝑘 ) is a struc-
tural proximity metric such as the shortest path distance. In this
case, 𝜋𝑠

𝑖
denotes a specified distance range. For example, in an un-

weighted social network, if 𝜋𝑠
𝑖

= (0, 2], the sphere 𝑆𝑖 includes
participants 𝑣𝑥 who are within two-hop neighborhood of 𝑣𝑘 .
Temporal View. The relation paradigm | |𝑣𝑥 , 𝑣𝑘 | | |= 𝜋𝑡𝑖 in temporal
view is defined by the time proximity to 𝑣𝑘 , i.e., 𝑡𝑘 − 𝑡𝑥 ∈ 𝜋𝑡𝑖 , where
𝜋𝑡
𝑖
denotes a specified time range. For example, if 𝜋𝑡

𝑖
= [0, 12) hours,

the sphere 𝑆𝑖 includes participants 𝑣𝑥 whose participation time 𝑡𝑥
occurs within 12 hours of 𝑡𝑘 , i.e., the participation time of 𝑣𝑘 .

In this paper, we integrate two representative observations from
the structural and temporal views, which highlight participants
who are socially or temporally relevant. Moreover, Definition 2 is
agnostic to a specific view; more validated views can seamlessly
extend to our framework based on the relation paradigm 𝜋𝑖 .

2.3 Problem Formulation
Information diffusion prediction aims to identify the next partici-
pant 𝑣𝑘+1 given the current cascade 𝐶𝑘 . As discussed above, the se-
quential cascade 𝐶𝑘 overlooks the sphere effect—the localized influ-
ence patterns inherent in the diffusion process. To address this, we
utilize the sphere-based cascade S𝑘 to capture the influence dynam-
ics surrounding 𝑣𝑘 . For the entire cascade history, we construct a col-
lection of sphere-based cascades, denoted as 𝛤𝑘 = {S1,S2, . . . ,S𝑘 },
which includes the evolving sphere effects for all participants in
𝐶𝑘 . Formally, the prediction task is to select an optimal 𝑣𝑥 from
𝑉 \ 𝑉𝑘 , to maximize the following conditional likelihood, as the
next participant 𝑣𝑘+1:

𝑣𝑥 = arg max
𝑣𝑥 ∈𝑉 \𝑉𝑘

𝑃 (𝑣𝑥 | 𝐺, 𝛤𝑠𝑘 , 𝛤
𝑡
𝑘
) (1)

where𝑉𝑘 denotes the set of users already involved in the cascade𝐶𝑘 ,
and 𝛤𝑠

𝑘
, 𝛤 𝑡

𝑘
represent the collections of sphere-based cascades under

the structural and temporal views, respectively. In the appendix,
Table 8 provides a notation table for sphere-related concepts.

3 Methodology
Figure 2 depicts the overall framework of our proposed SILN. To
overcome the two major limitations of existing models over large-
scale networks, SILN adopts an efficient two-phase framework:
• Phase-I: Efficient subgraph extraction and embedding. We
first develop an efficient subgraph learning scheme that obtains
more expressive participant embeddings from a well-selected
cascade-specific subgraph rather than the entire graph. An op-
timized graph storage is also proposed to reduce storage space
overhead and the I/O cost of subgraph extraction.
• Phase-II: Sphere-based cascade learning.We then propose
the Structural-view bias-Attention network and the Temporal-
view cross-Attention network to enhance the sphere effect among
cascade participants, which can identify the differentiated influ-
ences among participants. Finally, we employ an adaptive fusion
module to integrate the various views for diffusion prediction.
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3.1 Subgraph Extraction and Embedding
As discussed in Section 1, a key limitation is the need to process
the entire social network, much of which is irrelevant to a specific
cascade. Despite these promising observations, cascade subgraph
extraction poses technical challenges. (1) Efficiency: Predicting a
cascade often requires frequent online access to multi-hop neigh-
bors for multiple users, leading to substantial I/O overhead. Access-
efficient graph storage is critical to addressing the subgraph extrac-
tion bottleneck. (2) Effectiveness: To utilize various relationship
types among users, such as structural connections and interaction
preferences, existing methods [4, 18, 33, 44] often store separate
graphs for each relationship type and employ multiple learning
modules, resulting in redundant storage and high computational
costs. To address these challenges, we propose a three-pronged
scheme consisting of: (i) a multiplex relational sampler to focus
on high-importance nodes, (ii) efficient subgraph extraction using
optimized graph storage, and (iii) a lightweight embedding module
tailored to multi-relation graphs.

3.1.1 Multiplex Relational Sampler. In social networks, users often
exhibit various types of heterogeneous relationships. For example,
one type of edge may represent follower-followee relationships on
social platforms, while another may indicate shared interests in
trending topics. Accurately capturing these relationships is essential
for understanding information diffusion. To this end, we propose
two samplers tailored to different types of user relationships. First,
Follower-Followee Sampler: This sampler captures follower and
followee relationships in the original social network. It performs
multiple 𝑙-hop random walks starting from each node in parallel,
recording the landing probabilities for each visited node. The top-𝑠
neighbors with the highest probabilities are then selected. Since
graph convolution is sensitive to edge direction in directed graphs,
follower and followee relationships are treated as distinct edge
types [25, 38]. For follower relationships, we transpose the directed
graph (i.e., reverse the edge directions) and apply the same random
walk-based sampling. Second, Interaction Sampler: This sampler
identifies interaction relationships based on historical diffusion cas-
cades, capturing user behavioral preferences [28, 33, 44, 48]. Given
historical cascades 𝐶 and a threshold 𝜌 , it calculates the frequency
of co-occurrences for each user pair (𝑣𝑖 , 𝑣 𝑗 ) within historical cas-
cades 𝐶 . An edge (𝑣𝑖 , 𝑣 𝑗 ) is created if the co-occurrence frequency
exceeds the threshold 𝜌 . These edges provide valuable information
about users’ interaction patterns and preferences.

In general, we maintain three types of relations (i.e., follower,
folowee, and interaction). Previous methods [18, 28, 33, 44, 48] main-
tain and learn separate graphs for each relation type, which incurs
high storage and computation costs. Notably, multiple edges of dif-
ferent types may exist simultaneously between a node pair, which
presents an optimization opportunity.

3.1.2 Optimized Graph Storage. In this part, we optimize a compact
and efficient graph storagemethod that supports multiplex relations
and enables time-efficient subgraph extraction. It uses three arrays:

• User Pointers: This array maintains the starting position 𝛿𝑢 of
each user 𝑢’s neighbors in the Neighbor Indices array.
• Neighbor Indices: This array contains the indices of the neigh-
bors for each user, each entry represents a neighbor of a user.

Figure 3: Optimized multiplex relation graph storage.

• Relation Values: This array stores the encoded relation values
indicating multiplex relations for every user and its neighbors.

Example. Figure 3 illustrates the optimizedmultiplex relation graph
storage for three types of relations between node 𝑢 and its neigh-
bors. In User Pointers array, 𝛿𝑢 and 𝛿𝑢+1 point to the position of 𝑎
and 𝑥 respectively, and it means that the segment from 𝑎 to 𝑧 in
Neighbor Indices array maintains the neighbors of 𝑢. For a neighbor
𝑐 of𝑢, its relation value is 3, corresponding to binary code 011, which
indicates 𝑢 and 𝑐 have relations 𝑅2 and 𝑅3 because the second and
third digits are 1 in 011. This design allows storing a single entry
{(𝑢, 𝑐) : 3} to represent two relational edges {(𝑢, 𝑅2, 𝑐), (𝑢, 𝑅3, 𝑐)}.

Experiments in Table 6 show that this design reduces space
usage by approximately 30%. Moreover, as neighbors are stored
contiguously, the start and end positions from the User Pointers
array enable constant-time (𝑂 (1)) access to all neighbors of any
user. In summary, let 𝑟 be the number of relation types, 𝑠 be the
sampling number per node, and 𝑙 be the sampling hops. Compared
to baselines [28, 35, 48], the space cost of graph storage is reduced
from 𝑂 (𝑟 × |𝐸 |) to 𝑂 ( |𝐸 |), and the subgraph extraction time is
reduced from𝑂 (𝑘×𝑠𝑙 ) to𝑂 (𝑘), for a cascade𝐶𝑘 with 𝑘 participants.

3.1.3 Relation-aware Embedding. After subgraph extraction, we
learn embeddings for cascade participants from the cascade-specific
subgraph. To balance performance and efficiency for multiplex
relations, we design a lightweight relation-aware subgraph learning
module. Specifically, for each participant 𝑣𝑖 in a cascade 𝐶𝑘 , we
efficiently extract their neighbor setN𝑖 of 𝑣𝑖 and associated relation
types. We then calculate a relation weight 𝜔𝑖 𝑗 for each neighbor
𝑣 𝑗 ∈ N𝑖 of 𝑣𝑖 as follows:

𝜔𝑖 𝑗 = 𝜷 · 𝒆𝒊𝒋 (2)

where 𝒆𝒊𝒋 ∈ R |𝑅 | is a binary encoding of relation type in 𝑅𝐸 and 𝜷 ∈
R |𝑅 | is a learnable parameter, where each element 𝛽𝑟 corresponds to
the weight of a specific relation type. We apply the softmax function
to normalize 𝜷 , ensuring

∑ |𝑅 |
𝑟=1 𝛽𝑟 = 1. In practice, the number of

relation types |𝑅 | = 3 means that the only parameter 𝜷 is very
lightweight. After that, the relation-aware embedding of user 𝑣𝑖
can be calculated by relation-weighted neighbor aggregation:

𝒉𝒊 = Aggregate({𝜔𝑖 𝑗𝒉𝒋 : 𝑣 𝑗 ∈ N𝑖 }) (3)

where N𝑖 is the sampled neighbor set of 𝑣𝑖 , 𝒉𝒊 ∈ R𝑑 denotes the
embedding of 𝑣𝑖 . We use a simple Sum function for aggregation.
For a specific cascade 𝐶𝑘 with 𝑘 participants, we obtain the user
embeddings of all participants 𝑯𝒌 ∈ R𝑘×𝑑 in similar way, which
are subsequently used for sphere-based cascade learning.
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3.2 Sphere-based Cascade Learning
In this section, we enhance the structural-view and temporal-view
sphere effect. Specifically, we design two variants of the attention
mechanism and an adaptive fusion module, which transform partic-
ipant embeddings 𝑯𝒌 into a sphere-based cascade representation.

3.2.1 Structural-view bias-Attention. From the structural view, users
aremore likely to be influenced by thosewho are “closer” to them [15,
17]. Various efficient structural proximity metrics [15, 31, 36] can
be used as relation paradigms. As an example, we adopt the short-
est path distance [26] to divide the structural-view sphere-based
cascade S𝑠

𝑘
= {𝑆1, · · · , 𝑆 |S𝑠

𝑘
| } from 𝐶𝑘 . Each sphere 𝑆𝑖 contains

participants at a specified distance from 𝑣𝑘 . For each participant
𝑣𝑥 ∈ 𝑆𝑖 , an influence score𝜓𝑘,𝑥 is assigned, which also reflects the
overall influence of sphere 𝑆𝑖 on 𝑣𝑘 . The influence score𝜓𝑘,𝑥 can
be calculated as follows:

𝜓𝑘,𝑥 =
1

log(e + 𝑑 (𝑣𝑥 , 𝑣𝑘 ))
(4)

where the mathematical constant e ≈ 2.718, and 𝑑 (𝑣𝑥 , 𝑣𝑘 ) is the
shortest path distance from 𝑣𝑥 to 𝑣𝑘 in the social network. In this
way, 𝝍𝒌 = [𝜓𝑘,1,𝜓𝑘,2, . . . ,𝜓𝑘,𝑘 ] can represent the structural influ-
ence between 𝑣𝑘 and its previous participants in the cascade 𝐶𝑘 .

For the whole diffusion process, we calculate 𝝍 for the collection
𝛤𝑠
𝑘
= {S𝑠1 ,S

𝑠
2 , · · · ,S

𝑠
𝑘
} and can further obtain the structural sphere

relation matrix 𝚿:

𝚿 = [𝝍1, 𝝍2, . . . , 𝝍𝒌 ]T (5)

where 𝚿 ∈ R𝑘×𝑘 is a lower triangular matrix. We transform 𝚿 for
model integration as:

𝚿̃ = 𝜎

(
𝚿𝑾1

𝒔

)
𝑾2

𝒔 (6)

where𝑾1
𝒔 ,𝑾

2
𝒔 ∈ R𝑑×𝑑 are the learnable transformation matrices

and 𝜎 (·) is the ReLU activation. To differentiate the influence of dif-
ferent spheres, we incorporate 𝚿̃ as a bias term into the Structural-
view bias-Attention Network (SSAN), which modulates attention
weights to emphasize structurally closer users. The 𝑖-th attention
head of SSAN is defined as:

𝑸𝒊 = 𝑯
′

𝒌𝑾
𝑸
𝒊 ,𝑲𝒊 = 𝑯

′

𝒌𝑾
𝑲
𝒊 , 𝑽𝒊 = 𝑯

′

𝒌𝑾
𝑽
𝒊 (7)

SSAN𝑖 (𝑸𝒊,𝑲𝒊, 𝑽𝒊) = softmax
(
𝑸𝒊𝑲𝒊

T
√
𝑑
′ +𝑴 + 𝚿̃

)
𝑽𝒊 (8)

where 𝑑 is the embedding dimension, 𝐵 is the number of heads,
𝑑
′
= 𝑑/𝐵,𝑾𝑸

𝒊 ,𝑾𝑲
𝒊 , and𝑾𝑽

𝒊 are learnable weight matrices. The
mask matrix 𝑴 ∈ R𝑛×𝑛 is used to block out future participants.

Finally, we concatenate the output of 𝐵 attention heads and use
a position-wise Feed-Forward Network (FFN) to capture non-linear
dependencies within the cascade:

𝑻 = [SSAN1 | | . . . | |SSAN𝐵]𝑾𝒐 (9)

𝑯𝒔 = (ReLU(𝑻𝑾1
𝒔 + 𝒃1𝒔 ))𝑾2

𝒔 + 𝒃2𝒔 (10)

where𝑾𝒐 ,𝑾1
𝒔 ,𝑾2

𝒔 , 𝒃1𝒔 , and 𝒃2𝒔 are learnable parameters, | | is the
concatenation operation, and the representation 𝑯𝒔 ∈ R𝑘×𝑑 is
the sphere-based cascade representation in structural view. Our
formulation supports the seamless substitution of alternative prox-
imity metrics via 𝜓𝑘,𝑥 , allowing flexible hot-swapping; we leave
this exploration for future work.

3.2.2 Temporal-view cross-Attention. As introduced in Section 2.2,
participants with similar characteristics tend to engage in the dif-
fusion process during the same temporal stage [1, 3, 19, 45]. To
capture this behavior, we identify each participant’s temporal stage
and enhance the shared characteristics within that stage.

For a participant 𝑣𝑘 , the current stage 𝑆𝑐
𝑘
is defined based on

temporal proximity. Specifically, 𝑆𝑐
𝑘
includes participants whose

interactions occurred within a certain time range preceding (𝑣𝑘 , 𝑡𝑘 ).
The time range of current stage 𝑆𝑐

𝑘
is identified as:

min{𝑞 × Δ𝑡, 𝑡𝑘 − 𝑡𝑘−𝑞}, where Δ𝑡 =
1
𝑘

𝑘∑︁
𝑥=1
(𝑡𝑥 − 𝑡𝑥−1) (11)

where parameter 𝑞 controls the time range of current stage. If
timestamps are unavailable, we fallback to selecting the most recent
𝑞 participants as the current stage. The earlier stage 𝑆𝑒

𝑘
includes all

participants not in 𝑆𝑐
𝑘
. Hence, the sphere-based cascade for 𝑣𝑘 is

represented as S𝑡
𝑘
= {𝑆𝑐

𝑘
, 𝑆𝑒

𝑘
}. Across the whole diffusion process,

the collection 𝛤 𝑡
𝑘
= {S𝑡1,S

𝑡
2, · · · ,S

𝑡
𝑘
}. However, since each earlier

stage 𝑆𝑒
𝑘
is implicitly captured in {𝑆𝑐1, . . . , 𝑆

𝑐
𝑘−1}, we only need to

focus on the evolution of the current stage set {𝑆𝑐1, 𝑆
𝑐
2, . . . , 𝑆

𝑐
𝑘
}. Then

we compute the embedding of each stage, such as 𝑆𝑐
𝑘
as follows:

𝒛𝒌 = 𝒐𝒌 ⊙ (
1
|𝑆𝑐
𝑘
|

∑︁
𝑣𝑥 ∈𝑆𝑐𝑘

𝒉𝒙 ) + (1 − 𝒐𝒌 ) ⊙ 𝒉𝒌 (12)

𝒐𝒌 = 𝜎 (𝑾1
𝒈 (

1
|𝑆𝑐
𝑘
|

∑︁
𝑣𝑥 ∈𝑆𝑐𝑘

𝒉𝒙 ) +𝑾2
𝒈𝒉𝒌 ) (13)

where 𝒉𝒙 is the embedding of participant 𝑣𝑥 , 𝑾1
𝒈 ,𝑾

2
𝒈 ∈ R𝑑×𝑑

are learnable parameters, 𝜎 (·) is the sigmoid activation, and ⊙
is the Hadamard product. The collection of stage embeddings is
𝒁𝒌 = {𝒛1, 𝒛2, . . . , 𝒛𝒌 }, representing stage evolution patterns.

We introduce the Temporal-view cross-Attention Network (TCAN)
to capture stage-wise influence across the cascade. TCAN computes
cross-attention between stage embeddings 𝒁𝒌 and participant em-
beddings 𝑯𝒌 = {𝒉𝒙 |𝑣𝑥 ∈ 𝐶𝑘 }. For the 𝑖-th attention head:

𝑸𝒊 = 𝒁𝒌𝑾
𝑸
𝒊 , 𝑲𝒊 = 𝑯𝒌𝑾

𝑲
𝒊 , 𝑽𝒊 = 𝑯𝒌𝑾

𝑽
𝒊 (14)

TCAN𝑖 (𝑸𝒊,𝑲𝒊, 𝑽𝒊) = softmax
(
𝑸𝒊𝑲𝒊

T
√
𝑑
′ +𝑴

)
𝑽𝒊 (15)

Finally, the Multi-Head mechanism and Feed-Forward Network
(FFN) are applied as in Eqs. (9) and (10), resulting in the temporal-
view sphere-based cascade embedding 𝑯𝒕 ∈ R𝑘×𝑑 . Eq. (15) allows
each stage to attend over all prior participants, assigning higher
weights to those most relevant to the current stage 𝑆𝑐

𝑘
, including

influential users from earlier stages.
Overall, both SSAN and TCAN assign higher attention weights

to sphere-important participants. In Section 4.5, we empirically
verify that such participants exert greater influence on the diffusion
process and significantly improve prediction accuracy.

3.2.3 Dual-View Gated Fusion. Both structural and temporal views
offer valuable insights into information diffusion, and we employ
gated fusion to adaptively integrate them:

𝜶 = 𝜎 (𝑾1
𝒇 𝑯𝒔 +𝑾2

𝒇 𝑯𝒕 + 𝒃𝒇 ) (16)

𝑯 = 𝜶 ⊙ 𝑯𝒔 + (1 − 𝜶 ) ⊙ 𝑯𝒕 (17)
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Algorithm 1: Learning Procedure of SILN
Input: Social network 𝐺𝑜 , Training set of cascades 𝐶
Output: Trained parameters 𝜃

1 𝐺 ← MultiplexRelationalSamplers(𝐺𝑜 ,𝐶);
2 Offline store 𝐺 in optimized graph storage;
3 Initialize all parameters in 𝜃 ;
4 while L has not converged do
5 for 𝐶𝑘 ∈ 𝐶 do

// Phase-I: Subgraph Extraction and Embedding

6 for 𝑣𝑖 ∈ 𝐶𝑘 do
7 Extract neighbors N𝑖 in 𝑂 (1) time from 𝐺 ;
8 𝒉𝒊 ← Aggregate({𝜔𝑖 𝑗𝒉𝒋 : 𝑣 𝑗 ∈ N𝑖 });
9 Participant embeddings 𝑯𝒌 = {𝒉1, . . . ,𝒉𝒌 } for 𝐶𝑘 ;

// Phase-II: Sphere-based Cascade Learning

10 Structural relation matrix 𝚿̃ in Eq. (6);
11 𝑯𝒔 ← SSAN(𝑯 ′

𝒌
,𝑯

′

𝒌
,𝑯

′

𝒌
, 𝚿̃);

12 Stage evolution embeddings 𝒁𝒌 in Eq. (12);
13 𝑯𝒕 ← TCAN(𝒁𝒌 ,𝑯𝒌 ,𝑯𝒌 );
14 Cascade representation 𝑯 ← Fusion(𝑯𝒕 ,𝑯𝒔 );
15 Predict next participant 𝑦 in Eq. (18);
16 Update parameters by minimizing the loss L(𝜃 );

17 return All parameters 𝜃 ;

where𝑾𝒇
1,𝑾𝒇

2 ∈ R𝑑×𝑑 , and 𝒃𝒇 are learnable parameters, 𝜎 (·) is
the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function, ⊙ denotes the Hadamard product, 𝑯 ∈ R𝑘×𝑑

is the final cascade representation for diffusion prediction.

3.3 Prediction & Training
3.3.1 Diffusion Prediction. We can calculate the probability 𝑦 ∈
R |𝐶𝑘 |× |𝑉 | of the next participant using a softmax function:

𝑦 = softmax(𝑾𝒑𝑯 +𝑀𝑎𝑠𝑘) (18)

where𝑾𝒑 maps the cascade representation 𝑯 to user-specific space,
𝑀𝑎𝑠𝑘 is applied to exclude already participating users.

3.3.2 Training Objective. We use the cross-entropy function to
minimize the predicted𝑦𝑖 𝑗 and the ground-truth𝑦𝑖 𝑗 as the objective:

L(𝜃 ) = −
|𝐶𝑘 |∑︁
𝑗=2

|𝑉 |∑︁
𝑖=1

𝑦𝑖 𝑗 log(𝑦𝑖 𝑗 ) (19)

in which 𝜃 denotes all parameters in the model, if the user 𝑣𝑖 partic-
ipates in cascade 𝐶𝑘 at the step 𝑗 , 𝑦𝑖 𝑗 = 1, otherwise 𝑦𝑖 𝑗 = 0. This
objective encourages the model to assign higher probability to the
correct participant at each diffusion step.

3.3.3 Algorithm Pseudocode. Algorithm 1 implements the SILN
training process. Lines 1-2 selectively sample and store neighbors
with multiplex relations. For each cascade 𝐶𝑘 , SILN first conducts
the Subgraph Extraction and Embedding module to rapidly extract
cascade-specific subgraph and encode user embeddings (Lines 5–9).
Next, SILN processes Sphere-based Cascade Learning module on
structural and temporal views, followed by adaptive fusion to opti-
mize the prediction objective (lines 10-16).

Table 1: Statistics for evaluation datasets.

Datasets Benchmark Large-scale
Twitter Douban Android Christianity Weibo-M Weibo-L

# Users 12,627 12,232 2,927 1,651 331,321 1,046,140
# Links 309,631 396,580 48,573 35,624 14,534,265 63,487,436
Density 24.52 30.21 16.59 21.58 43.87 60.69

# Cascades 3442 3475 679 589 6828 31,521
Avg. Len. 32.60 21.76 33.30 22.90 163.76 184.87
Density 8.89 6.18 7.72 8.17 3.36 5.57

3.3.4 Complexity Analysis. Let 𝑀 be the number of edges in 𝐺 ,
𝑘 be the length of cascade 𝐶𝑘 , 𝑠 denote the number of sampled
neighbors per user, and 𝑑 be the embedding dimension. For graph
learning, SILN extracts and learns the sampled subgraph for 𝐶𝑘
with time complexity 𝑂 (𝑠𝑘𝑑). In contrast, existing models learns
on the entire graph with different relation types, leading to at least
𝑂 (𝑀𝑑) complexity. The neighbor sampler ensures that 𝒔𝒌 ≪ 𝑴 .
For sphere-based cascade learning, the additional complexity for
modeling sphere effect is 𝑂 (𝑘𝑑), and thus the complexity is still
𝑂 (𝑘2𝑑), similar to Self-Attention. Overall, the total time complexity
of SILN is𝑂 ((𝑠𝑘 +𝑘2)𝑑), while other models require𝑂 ((𝑀 +𝑘2)𝑑).

4 Performance Evaluation
4.1 Experiment Setup
4.1.1 Datasets. We conduct experiments on fourwidely-used bench-
mark datasets, including Twitter [13], Douban [47], Android [30],
and Christianity [30]. Further, we evaluate the large-scale social
network dataset Weibo [46] for the first time, where we preprocess
the raw data and extract two sub-datasets of different sizes, de-
noted asWeibo-M andWeibo-L. Each dataset includes a static social
network and a set of diffusion cascades. We follow prior work by
splitting cascades chronologically into training, validation, and test
sets in an 8:1:1 ratio. To avoid information leakage, we construct
a multiplex relation graph using only the original social network
and training cascades. Detailed statistics are shown in Table 1.

4.1.2 Evaluation Metrics. Following prior studies [18, 28, 33], we
use Hits rate (Hits@K) and Mean Average Precision (MAP@K) to
evaluate the performance on benchmark datasets. Let 𝑢𝑖 and𝑈𝑖 be
the ground-truth user and the predicted top-K ranked users (i.e.,
|𝑈𝑖 | = 𝐾 ), the Hits@K and MAP@K is defined as:

Hits@K =
1
𝑁

𝑁∑︁
𝑖=1

I(𝑢𝑖 ∈ 𝑈𝑖 ) MAP@K =
1
𝑁

𝑁∑︁
𝑖=1

I(𝑢𝑖 ∈ 𝑈𝑖 )
𝛾𝑢𝑖

where 𝑁 is the total number of cascades and 𝛾𝑢𝑖 is the predicted
rank of user 𝑢𝑖 . The indicator I(𝑥) = 1 if 𝑥 is true, and 0 otherwise.

For large-scale Weibo datasets, identifying a single next partici-
pant from million users is exceedingly demanding. Therefore, we
define a more relaxed metric on large-scale Weibo datasets, named
the Group Hit Rate on top-𝐾 (GHR@K) as follows:

𝐺𝐻𝑅@𝐾 =
1
𝑁

𝑁∑︁
𝑖=1

I( |𝑈𝑖 ∩𝑈𝑖 | ≥ 𝜖)

where𝑈𝑖 denotes a group of ground-truth users for the 𝑖-th cascade,
𝜖 is the hit threshold. In our experiments, we select multiple future
participants as a ground-truth group 𝑈𝑖 = {𝑣𝑘+1, . . . , 𝑣𝑘+|𝑈𝑖 | } for a
cascade 𝐶𝑘 . Note that GHR reduces to Hits when |𝑈𝑖 | = 𝜖 = 1.
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Table 2: Hits@𝐾 on four benchmark datasets (%), scores are the higher the better.

Datasets Twitter Douban Android Christianity
Metrics H@10 H@50 H@100 H@10 H@50 H@100 H@10 H@50 H@100 H@10 H@50 H@100

DyHGCN 31.88 45.05 52.19 18.71 32.33 39.71 9.10 16.38 23.09 26.62 42.80 52.47
MSHGAT 33.50 49.59 58.91 21.33 35.25 42.75 10.41 20.31 27.55 28.80 47.14 55.62
DisenIDP 34.01 52.21 60.39 21.46 35.81 43.01 9.88 18.64 26.06 29.04 47.92 57.05
RotDiff 35.90 52.46 61.21 21.50 35.92 42.96 10.73 21.58 28.47 30.71 51.44 59.97
MINDS 34.26 52.83 59.54 21.38 35.44 43.06 10.86 20.47 27.92 31.32 50.63 61.04
GODEN 35.61 53.08 61.87 21.71 35.89 42.81 10.69 21.23 28.05 29.39 49.21 58.02
CARE 36.32 53.29 63.12 21.83 36.04 43.14 10.98 22.74 29.13 30.79 52.07 62.44

SILN (ours) 39.72 55.67 65.03 21.95 36.23 43.48 11.10 23.14 30.43 32.14 53.13 63.39

Table 3: MAP@𝐾 on four benchmark datasets (%), scores are the higher the better.

Datasets Twitter Douban Android Christianity
Metrics M@10 M@50 M@100 M@10 M@50 M@100 M@10 M@50 M@100 M@10 M@50 M@100

DyHGCN 20.87 21.48 21.58 10.61 11.26 11.36 6.09 6.40 6.50 15.64 16.30 16.44
MSHGAT 22.49 23.17 23.30 11.72 12.52 12.60 6.39 6.87 6.96 17.44 18.27 18.40
DisenIDP 23.04 23.61 23.94 11.69 12.55 12.64 5.93 6.31 6.40 18.21 18.96 19.22
RotDiff 24.06 24.82 24.95 12.02 12.83 12.97 6.81 7.20 7.36 18.73 19.32 19.65
MINDS 22.90 23.28 23.46 11.75 12.61 12.72 6.79 7.19 7.33 19.13 19.96 20.01
GODEN 24.80 25.62 25.75 12.06 12.53 12.64 6.88 7.25 7.58 19.02 19.51 19.96
CARE 25.17 25.86 25.93 12.42 13.01 13.29 6.91 7.44 7.63 19.20 19.88 20.02

SILN (ours) 28.23 28.79 29.09 12.87 13.41 13.58 7.17 7.69 7.79 19.65 20.52 20.66

4.1.3 Compared Methods. We consider seven recent models as
competitors and briefly introduce them as follows: (1)DyHGCN [44]
utilizes GCN to learn user embeddings on both social and diffusion
graphs. (2) MSHGAT [33] introduces a Hypergraph Network to
capture diffusion relationships, then uses Self-Attention to model
the sequential cascade. (3) DisenIDP [4] disentangles user em-
beddings on two intent-specific hypergraphs, and then captures
LS-term sequential cascade. (4) RotDiff [28] develops a hyperbolic
rotation model to encode user embeddings and uses rotation po-
sitional encoding for cascade learning. (5) MINDS [18] employs
adversarial training and orthogonality constraints to mitigate user
feature redundancy. After that, it uses the LSTM for sequential
cascade modeling. (6) GODEN [35] introduces ODE-based GNN
to learn the dynamic user relations and also uses timestamps posi-
tional encoding to improve local dynamics. (7) CARE [48] retrieves
similar historical cascades to enhance current cascade learning,
which can provide more relevant historical interactions.

4.1.4 Implementation Details. The experiments are conducted on
NVIDIA RTX 4090 (24GB) GPU. For baselines, we follow the set-
tings in the original papers and rerun them to report the results
accordingly. Cascades are split with a ratio of 8:1:1 for training, val-
idation, and testing. To prevent information leakage, only training
cascade data is used as historical interaction data. The maximum
cascade length is fixed at 200 across all methods. For hyperparam-
eters, the follower-followee sampler uses 𝑙 = {2, 3, 4} and 𝑠 = {30,
50, 100}, while the interaction sampler uses 𝜌 = {2, 3}. The size of
the temporal-view current stage is 𝑞 = {2, 3}. We use the AdamW
optimizer with a learning rate of 1e-3. The batch size is 16 or 32, the
embedding dimension is {64, 128}. For GHR@K, the ground-truth

group size |𝑈𝑖 | is set to 50, and the hit threshold 𝜖=1. In addition,
we analyze three key hyperparameters {𝑙 , 𝜌 , 𝑞} in Appendix A.2.

4.2 Effectiveness Analysis
4.2.1 Performance on benchmark datasets. Table 2 and Table 3 sum-
marize the benchmarked performance comparison of SILN with
seven recent competitors. Specifically: (1) Compared to competitors,
SILN incorporates the sphere effect to capture the differentiated
influence among participants in both structural and temporal views,
which goes beyond a simple sequential cascade and results in a
more accurate prediction. (2) Unlike previous multi-relation meth-
ods that emphasize nuanced user embeddings and perform global
graph learning by constructing complex structures, SILN efficiently
extracts well-selected cascade-specific subgraphs. This avoids us-
ing complex modules and enables efficient learning of multiplex
relations, while maintaining excellent performance. (3) The results
also indicate the need to include various relevant factors, such
as user relations, temporal patterns, and structural dependencies.
SILN effectively exploits multiplex user relations and captures the
sphere effect. With its efficiency and effectiveness, SILN provides a
comprehensive solution for diffusion prediction.

4.2.2 Performance on large-scale datasets. We compare the perfor-
mance of SILN with the strongest competitors CARE and GODEN.
However, these models cannot work on large-scale social networks,
while all other competitors also cannot work (not shown in the
Table 4). Therefore, we extend the analysis to include the classic
GCN [21], GAT [34], and GraphSAGE [12] models, which are typ-
ically used as base modules in complex competitors and thus not
included in all experiments. As shown in Table 4, simple GCN and
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Table 4: GHR@𝐾 on two large-scale Weibo datasets with 𝜖=1.
“–” indicates methods that are out-of-memory (OOM).

Models Weibo-M Weibo-L
G@100 G@500 G@1000 G@100 G@500 G@1000

GCN 6.45 21.18 33.42 – – –
GAT – – – – – –
SAGE 5.34 18.84 30.23 – – –
GODEN – – – – – –
CARE – – – – – –
SILN 9.78 28.39 42.14 2.17 7.49 12.83

Table 5: Computational efficiency on three datasets. Only
methods without out-of-memory (OOM) errors are included.

Datasets Twitter Weibo-M Weibo-L
Models GODEN CARE SILN GCN SAGE SILN SILN

Runtime Train 42.73 48.68 17.67 219.16 192.79 222.58 3169.52
(seconds.) Inf. 7.14 7.91 2.89 24.17 22.17 25.32 297.41
Memory RAM 5.68 6.79 2.25 5.02 5.02 4.94 9.27
(GB) GPU 7.73 8.42 2.01 19.47 15.78 10.34 22.58

Table 6: Efficiency optimization of graph storage.

Efficiency Storage Space (MB) Access Time (sec.)
Twitter Weibo-M Weibo-L Twitter Weibo-M Weibo-L

Before 10.57 742.65 2074.60 6.0546 58.5473 >100
After 7.49 548.83 1380.72 ~0.002 ~0.002 ~0.002

GraphSAGE can handle the WeiboM dataset, while GAT needs to
calculate the attention weights for every node pair, causing ex-
pensive memory and computational overheads. On million-node
graphs, the full-graph training of GCN and GraphSAGE are still
out-of-memory. In contrast, SILN shows excellent performance
by focusing on smaller subgraphs. Although GraphSAGE has a
sampling mechanism, it still needs to load the graph data to the
GPU-side; if sampling is done on the CPU-side, frequent neighbor
sampling and data transfer become an efficiency bottleneck.

4.3 Efficiency Analysis
4.3.1 Computational Efficiency. As shown in Table 5, we analyze
the efficiency on the Weibo and Twitter datasets, other smaller
datasets have similar performance to Twitter. Specifically: (1) Run-
time: Our offline sampler combined with storage optimization can
avoid the complex online graph construction, which significantly
saves runtime. Although SILN is more complex compared to simple
base models GCN and GraphSAGE, it does not consume much more
runtime for trade-off performance. (2) Memory: Compared with
CARE and GODEN, our SILN avoids maintaining multiple graphs
for learning user multiplex relations. Furthermore, the subgraph
learning of SILN does not need to load the entire graph into GPU
memory, which exhibits superior GPUmemory efficiency compared
to others with directly learning on the entire graph.

4.3.2 Efficiency of Graph Storage. For space efficiency, we com-
pare the memory cost before and after optimizing the duplication
of multiplex relations. For time efficiency, we compare the time
cost of subgraph extraction with the widely used COO format [7],
specifically simulating the batch size at 64 and the cascade length
at 100, resulting in 6400 neighbor accesses. As shown in Table 6,
memory cost of graph storage is reduced by approximately 30%.

Table 7: Ablation performance of SILN and its variants.

Models Twitter Android
Hits@100 MAP@100 Hits@100 MAP@100

SILN 65.03 29.09 30.43 7.79
w/o MR 62.38 28.16 28.64 7.37
w/o RW 63.96 28.72 29.11 7.58
w/o TA 63.46 27.76 29.32 7.67
w/o SA 63.91 26.42 29.50 7.26

Sequential 62.27 24.71 28.96 7.01
w/o GF 64.44 27.87 29.81 7.51

Subgraph extraction consumes merely 0.002 seconds in different
datasets, almost independent of the entire graph size. In contrast,
the COO format would cause an efficiency bottleneck.

4.4 Ablation Study
To investigate the impact of each component on the SILN, we com-
pare different variants with the original model, as shown in Table 7.
(1) Graph Learning Module:We obtain the w/o MR variant us-
ing only the original social network and w/o RW with average
aggregation of multiplex relations. SILN outperforms both variants
on the both datasets, which effectively captures the complemen-
tary features inherent in multiple-type relationships. (2) Cascade
Learning Module: Both variants show performance degradation
when not considering temporal-view cross-attention (w/o TA) or
structural-view bias-attention (w/o SA). Moreover, the worst per-
formance is observed with the basic self-attention (Sequential),
which verifies the plausibility of our sphere-based information dif-
fusion and the limitations of the sequential cascade. (3) Dual-view
Fusion Module:We use a fixed scalar of 0.5 to fuse different views
(w/o GF), replacing the learnable feature filter 𝛼 in Eq. (17). As
we observed the performance degradation, selective integration of
information is crucial for prediction. It validates the necessity of
the adaptive dual-view fusion without manual selection of 𝛼 .

4.5 Analysis on Sphere Effect
4.5.1 Influence Visualization. We randomly select a cascade with
46 participants from the Twitter dataset to study SILN’s ability to
capture the sphere effect. We compare our Temporal-view cross-
Attention (TCAN) and Structural-view bias-Attention (SSAN) with
the Self-Attention mechanism, which is widely used for Sequential
Cascade [4, 28, 33, 44, 48]. Figure 4 shows the attention weights
between earlier participants and the next participant. (1) Variance
of Weights: The attention variance of Self-Attention is 3e-5, while
our proposed TCAN and SSAN modules show higher variances at
3e-4 and 1e-3, respectively. As discussed in Section 1, sequential cas-
cades almost treat all participants equally. By contrast, sphere-based
cascades better distinguish influences. (2) MaximumWeight: The
maximum weight of Self-Attention is 0.032, while our TCAN and
SSAN reach 0.069 and 0.171, respectively. Moreover, the participant
with the maximum weight indicated by both TCAN and SSAN is
the 38th participant. We found that User 38 is a direct neighbor of
User 46, and these two users frequently co-occur in other cascades. As
captured by SILN, User 38 is likely to directly influence User 46.
However, Self-Attention fails to identify who influences whom, and
assigns nearly equal weights to earlier participants.
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Figure 4: Influence Visualization: Color intensity indicates the influence on the last participant. The sequential cascade considers
all participants almost equally. Our proposed SILN captures the differentiated influences in structural and temporal views.

Figure 5: Counterfactual evaluation of sphere effect.

Figure 6: Empirical analysis of motivations. The higher Gini
Coefficient indicates more differentiated user influences.

4.5.2 Counterfactual Evaluation. We conduct a counterfactual eval-
uation to determine whether sphere-important participants are in-
deed more important for prediction. Specifically, we deliberately
ignore the influence among some participants by masking attention
weights (set to 0) in Eqs. (8) and (15). 1○ Structural Mask:Mask
the influence between participants who are structural neighbors.
2○ Temporal Mask:Mask the influence between participants in
the same temporal stage. As shown in Figure 5, masking sphere-
important participants in both structural and temporal views leads
to significantly larger performance degradation compared to ran-
dom masking. This highlights the critical role of these participants,
consistent with the observations in Section 2.2. Notably, random
masking of 10% of participants yields performance close to the
original results, and even improves performance in the Douban
dataset. This suggests that not all participants are influential or
useful, further supporting our motivation.

4.5.3 Empirical Analysis of Motivation. We conduct an empirical
analysis of the two limitations discussed in Section 1. To quantify
Limitation 1, we use the common statistical Gini Coefficient [9] to
measure the inequality in influence distribution (i.e., correlation
weights). As shown in Fig. 6(a), three baselines exhibit lower Gini
coefficients, indicating they tend to assign nearly equal influence
to all participants. For Limitation 2, Fig. 6(b) shows that randomly
dropping some edges can preserve or even enhance performance,
which indicates the inherent noise in the entire graph data.

5 Related Work
Information diffusion prediction aims to identify future participants
in social networks, with significant applications across various do-
mains [16, 24, 32, 41]. Recent learning-based methods can be sum-
marized as follows: (1) Cascade-focused Methods: Earlier works
like NDM [42] and SNIDSA [39] use CNNs and RNNs to model
sequential diffusion dependencies, which overlook global social
relationships among users. (2) Social Network-based Methods:
Graph Neural Networks (GNNs) extend this by learning user re-
lationships on social networks [30, 43], enabling the integration
of social and sequential patterns. For example, Inf-VAE [30] uses
GraphVAE and a co-attentive module to enhance user embeddings
on social networks. (3) Interaction-enhanced Methods: Histor-
ical interaction data can reveal preference relationships between
users. DyHGCN [44] utilizes both the social network and diffusion
graph to learn user embeddings. Recent advancements in hyper-
graph learning enable more nuanced modeling of user interactions.
Methods such as DisenIDP [4], MSHGAT [33], and MINDS [18] em-
ploy hypergraphs to capture dynamic user preferences. RotDiff [28]
uses hyperbolic space instead of Euclidean space for more refined
embeddings. GODEN [35] designs an ODE-based GNN to model
dynamic relationships, while CARE [48] retrieves similar historical
cascades to enhance current cascade learning by integrating more
interaction data. While these methods successfully learn detailed
user embeddings, they often face scalability challenges, limiting
their real-world practicality. Moreover, these methods struggle to
identify differentiated influence patterns among participants.

6 Conclusion and Future Work
In this paper, we propose an efficient and effective framework
for information diffusion prediction, called SILN. SILN employs a
subgraph-centric learning scheme with optimized graph storage,
reducing computation from the entire graph to smaller subgraphs. It
also captures the sphere effect through both structural and temporal
views, enhancing cascade representations for improved prediction.
Extensive experiments demonstrate the superiority of SILN in both
effectiveness and efficiency. In future work, we plan to integrate
LLMs for modeling emerging topics and users with sparse activity,
especially considering rich multimodal data on social platforms.
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Figure 7: Hyperparameters {𝑙 , 𝜌 , 𝑞} on benchmark datasets.

Table 8: Key notations and concepts used in this paper.

Notation Description

𝐺𝑜 The original social network
𝐺 A sampled multiplex relational social network
𝑣𝑖 A user (node) in the network 𝐺
N𝑖 The set of neighbors of user 𝑣𝑖 in 𝐺
𝐶𝑘 A cascade involving 𝑘 participants, ordered by time
𝑆 A sphere 𝑆 = {(𝑣𝑖 , 𝑡𝑖 )} ⊆ 𝐶𝑘 with similar influence
S A sphere-based cascade: a set of spheres, S = {𝑆1, 𝑆2, . . .}
Γ A collection of sphere-based cascades: Γ = {S1, . . . ,S𝑘 }
𝜋𝑖 A relation paradigm used to partition 𝐶𝑘 into S𝑖

Table 9: The settings of key hyper-parameters.

Parameter Value Description

𝑙 {2, 3, 4} Walk-based sampling hop.
𝜌 {2, 3} Interaction threshold.
𝑞 {2, 3} Factor of time range in Eq.(11).

𝑠 {30, 50, 100} Total number of sampled neighbors.
𝑑 {64, 128} The dimension of embedding.
𝐵 {4, 6, 8, 10} Number of attention heads.
𝜖 1 Threshold of GHR@K.

A Appendix
A.1 Notations
Table 8 summarizes the key notations and concepts introduced
in this work, with particular emphasis on the notion of a sphere.
Given a cascade 𝐶𝑘 , which is defined as a sequence of participants
(𝑣𝑖 , 𝑡𝑖 ), each sphere 𝑆 ⊆ 𝐶𝑘 represents a group of participants who
exert similar influence on a target user 𝑣𝑘 . Based on the influence
dynamics observed for a specific user 𝑣𝑎 , the cascade 𝐶𝑘 can be
partitioned into a set of disjoint spheres, forming a sphere-based
cascade denoted as S𝑎 = {𝑆1, 𝑆2, . . .}. Analogously, for another
user 𝑣𝑏 , the same cascade may be decomposed into a different
sphere-based cascade, denoted as S𝑏 . Consequently, for a given
cascade𝐶𝑘 and a set of target users, we derive a collection of sphere-
based cascades, expressed as Γ = {S1, . . . ,S𝑘 }, where each S𝑖
corresponds to the sphere-based decomposition relative to user
𝑣𝑖 . The sphere-based cascades enable a structured analysis of the
heterogeneous influence patterns within cascades.

A.2 Hyper-parameter Details
Table 9 details the parameter configurations used in all experiments.
To evaluate model robustness and inform practical deployment, we
analyze the impact of three key hyperparameters across four bench-
mark datasets, as illustrated in Fig. 7. These hyperparameters exhibit
consistent trends across datasets. Below, we summarize their func-
tional roles and provide recommended tuning strategies. Depth
of walk-based sampler (𝑙): This parameter defines the maximum
walk depth used in the walk-based sampling process on the social
network. Increasing 𝑙 enables the model to aggregate information
from multi-hop neighbors, which generally improves representa-
tional capacity and downstream performance. However, excessively
large values may lead to increased yet unnecessary computational
overhead. Empirically, setting 𝑙 in the range of 2 to 3 achieves a
favorable trade-off between expressiveness and efficiency. Interac-
tion threshold (𝜌): The threshold 𝜌 governs the retention of edges
based on the frequency of historical interactions. A high threshold
may prune weak but informative interactions (especially for users
with sparse activities), leading to under-connected structures and
suboptimal learning. Conversely, a low threshold introduces exces-
sive noise. We recommend using a moderate threshold that retains a
proportion of top-ranked interactions. Notably, the current strategy
may cause imbalance—active users tend to retain many interaction
edges, while inactive users retain few or none. A potential improve-
ment is to retain the top-𝑘% interactions per user (e.g., top 30%) to
ensure equitable edge distribution and connectivity. Stage time
window (𝑞): The parameter 𝑞 determines the temporal window
used to identify current stage. If 𝑞 is too small (e.g., 𝑞 = 1), tempo-
rally relevant participants may be excluded, resulting in fragmented
temporal contexts. In contrast, an excessively large size renders the
stage meaningless and weakens performance. In addition, the selec-
tion of parameters 𝑠 , 𝑑 , and 𝐵 follows a principled balance. 𝜖 serves
as a constraint on the GHR metric. Specifically, a larger 𝜖 imposes
stricter requirements on the model’s capability, thereby leading to
a lower observed GHR under fixed conditions. This paper initially
mitigates the efficiency challenges, and more practical prediction
on large-scale graphs remains an open challenge for future works.
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